Skip to main content
Log in

An analysis of electrostatically actuated micro vibrating structures incorporating squeezed film damping effect using an electrical equivalent circuit

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the response of microcantilever and microbridge actuators, under alternating current (AC) and direct current (DC) excitations. The analysis is carried out by simulating the electrical equivalent circuit of the actuators. An analogous circuit model for evaluation of velocity and acceleration in the microstructure is incorporated to the basic circuit model. The influence of squeeze film on the vibrating structure is also investigated. The effect of DC bias voltage on displacement, capacitance and electrostatic force are investigated. The transient response predicts a minimal change due to the pressure variation in the damping medium owing to the geometrical dimensions of the elements in the actuator. The frequency dependence of velocity and acceleration are also evaluated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Dumas N, Trigona C, Pons P, Latorre L, Nouet P (2011) Design of smart drivers for electrostatic MEMS switches. Sens Actuators A 167:422–432. doi:10.1016/j.sna.2011.01.024

    Article  Google Scholar 

  2. Badri AE, Sinha JK, Albarbar A (2010) A typical filter design to improve the measured signals from MEMS accelerometer. Measurement 43:1425–1430. doi:10.1016/j.measurement.2010.08.011

    Article  Google Scholar 

  3. Tang M, Caglian A, Davis ZJ (2011) Pulse mode readout of MEMS bulk disk resonator based mass sensor. Sens Actuators A 168:39–45. doi:10.1016/j.sna.2011.03.044

    Article  Google Scholar 

  4. Dai G, Li M, He X, Du L, Shao B, Su W (2011) Thermal drift analysis using a multiphysics model of bulk silicon MEMS capacitive accelerometer. Sens Actuators A 172:369–378. doi:10.1016/j.sna.2011.09.016

    Article  Google Scholar 

  5. Zhang Z, Liao X, Han L, Cheng Y (2011) A GaAs MMIC-based coupling RF MEMS power sensor with both detection and non-detection states. Sens Actuators A 168:30–38. doi:10.1016/j.sna.2011.03.039

    Article  Google Scholar 

  6. Stulemeijer J, Bielen JA, Steeneken PG, Bouwe van der Berg J (2009) Numerical path following as an analysis method for electrostatic MEMS. J Microelectromech Syst 18:488–499. doi:10.1109/JMEMS.2008.2011111

    Article  Google Scholar 

  7. Abdel-Rahman EM, Nayfeh AH, Younis MI (2003) Dynamics of an electrically actuated resonant microsensor. In: Proceedings of the international conference on MEMS, NANO and smart systems (ICMENS’03), 20–23 July 2003, pp 188–196. doi:10.1109/ICMENS.2003.1221991

  8. Jia XL, Yang J, Kitipornchai S, Lim CW (2012) Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation. J Sound Vib 331:3397–3411. doi:10.1016/j.jsv.2012.02.026

    Article  Google Scholar 

  9. Mestrom RMC, Fey RHB, van Beek JTM, Phan KL, Nijmeijer H (2008) Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens Actuators A 142:306–315. doi:10.1016/j.sna.2007.04.025

    Article  Google Scholar 

  10. Ramezani A, Alasty A, Akbari J (2007) Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. Int J Solids Struct 44:4925–4941. doi:10.1016/j.ijsolstr.2006.12.015

    Article  MATH  Google Scholar 

  11. Mita Makoto, Toshiyoshi Hiroshi (2009) An equivalent-circuit model for MEMS electrostatic actuator using open-source software Qucs. IEICE Electron Express 6:256–263. doi:10.1587/elex.6.256

    Article  Google Scholar 

  12. Matsuda Kazunori (2011) Equivalent-circuit model for electrostatic micro-torsion mirror. J Comput Electron 10:136–140. doi:10.1007/s10825-011-0353-z

    Article  Google Scholar 

  13. Maruyama Satoshi, Nakada Mukeni, Mita Makoto, Takahashi Takuya, Fujita Hiroyuki, Toshiyoshi Hiroshi (2012) An equivalent circuit model for vertical comb drive MEMS optical scanner controlled by pulse width modulation. IEEJ Trans Sens Micromech 132:1–9. doi:10.1541/ieejsms.132.1

    Article  Google Scholar 

  14. Seeger Joseph I, Boser Bernhard E (2003) Charge control of parallel-plate, electrostatic actuators and the tip-in instability. J Microelectromech Syst 12:656–671. doi:10.1109/JMEMS.2003.818455

    Article  Google Scholar 

  15. Mukundan V, Ponce P, Butterfield HE, Pruitt BL (2008) Modeling and validation of electrostatic actuators in aqueous ionic media. In: IEEE 21st international conference on MEMS, Tucson, AZ, USA, 13–17 Jan 2008, pp 467–470. doi:10.1109/MEMSYS.2008.4443694MEMS

  16. Nayfeh AH, Younis MI, Abdel-Rahman EM (2007) Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn 48:153–163. doi:10.1007/s11071-006-9079-z

    Article  MATH  Google Scholar 

  17. Toshiyoshi H, Konishi T, Machida K, Masu K (2012) A multi-physics simulation technique for integrated MEMS. In: 2012 IEEE international electron devices meeting (IEDM), San Francisco, CA, 10–13 Dec 2012, pp 6.3.1–6.3.4. doi:10.1109/IEDM.2012.6478989

  18. Jia XL, Zhang SM, Ke LL, Yang J, Kitipornchai S (2014) Thermal effect on the pull-in instability of functionally graded micro-beams subjected to electrical actuation. Compos Struct 116:136–146. doi:10.1016/j.compstruct.2014.05.004

    Article  Google Scholar 

  19. Birman V, Byrd LW (2007) Modeling and analysis of functionally graded materials and structures. Appl Mech Rev 60:195–216

    Article  Google Scholar 

  20. Toshiyoshi H (2011) A Spice-based multi-physics simulation technique for integrated MEMS. In: International conference on simulation of semiconductor processes and devices (SISPAD), 8–10 Sept 2011, Osaka, pp 239–242. doi:10.1109/SISPAD.2011.6035069

  21. Fernández Daniel, Madrenas Jordi, Domínguez Manuel, Pons Joan, Ricart Jordi (2008) Pulse drive and capacitance measurement circuit for MEMS electrostatic actuators. Analog Integr Circ Sig Process 57:225–232. doi:10.1007/s10470-008-9166-9

    Article  Google Scholar 

  22. Rocha LA, Cretu E, Wolffenbuttel RF (2003) Displacement model for dynamic pull-in analysis and application in large-stroke electrostatic actuators. In: Eurosensors XVII, 17th European conference on solid-state transducers, 20–21 Sept 2003, Guimaraes, Portugal, pp 448–451

  23. Pustan M, Muller R, Golinval JC (2012) Nanomechanical and nanotribological characterization of microelectromechanical system. J Optoelectron Adv Mater 14:401–412

    Google Scholar 

  24. Alsaleem FM, Younis MI, Ouakad HM (2009) On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J Micromech Microeng 19:045013. doi:10.1088/0960-1317/19/4/045013 (14 pp)

    Article  Google Scholar 

  25. Senturia SD (2002) Microsystem design. Chapter 6: Energy-conserving transducers. Kluwer Academic Publishers, New York

    Google Scholar 

  26. Lobontiu N (2007) Dynamics of microelectromechanical systems. Springer, New York

  27. Jiang Liudi, Hassan M, Cheung R, Harris AJ, Burdess JS, Zorman CA, Mehregany M (2005) Dry release fabrication and testing of SiC electrostatic cantilever actuators. Microelectron Eng 78–79:106–111. doi:10.1016/j.mee.2004.12.015

    Article  Google Scholar 

  28. Veijola Timo, Kuisma Heikki, Lahdenpera Juha, Ryhanen Tapani (1995) Equivalent-circuit model of the squeezed gas film in a silicon accelerometer. Sens Actuators A 48:239–248. doi:10.1016/0924-4247(95)00995-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kavitha.

Additional information

Technical Editor: Aline Souza de Paula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, C., Ganesh Madhan, M. An analysis of electrostatically actuated micro vibrating structures incorporating squeezed film damping effect using an electrical equivalent circuit. J Braz. Soc. Mech. Sci. Eng. 39, 925–936 (2017). https://doi.org/10.1007/s40430-016-0492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0492-z

Keywords

Navigation