Skip to main content
Log in

The persistence of logarithmic solutions in turbulent boundary layer systems

  • Original Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present work studies the prevalence of logarithmic solutions in the near wall region of turbulent boundary layers. Local solutions for flows subject to such diverse effects as compressibility, wall transpiration, heat transfer, roughness, separation, shock waves, unsteadiness, non-Newtonian fluids or a combination of these factors are discussed. The work also analyzes eleven different propositions by several authors for the near wall description of the mean velocity profile for the incompressible zero-pressure-gradient turbulent boundary layer. The asymptotic structure of the flow is discussed from the point of view of double limit processes. Cases of interest include attached and separated flows for the velocity and temperature fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Taylor GI (1916) Conditions at a surface of a hot body exposed to the wind. Brit Aeronaut Res Comm R & M 272

  2. Prandtl L (1925) Über die Ausgebildete Turbulenz. ZaMM 5:136

    MATH  Google Scholar 

  3. Von Karman T (1930) Mechanische Ähnlichkeit u. Turbulenz.Nachr Ges der Wiss Göttingen. Math Phys Klasse 58

  4. Von Karman T (1939) The analogy between fluid friction and heat transfer. Trans ASME 61:705–710

    MATH  Google Scholar 

  5. Millikan CB (1939) A critical discussion of turbulent flow in channels and tubes. In: Proceedings of 5th international congress on applied mechanics. J Wiley, NY

  6. Townsend AA (1961) Equilibrium layers and wall turbulence. J Fluid Mech 11:97–120

    Article  MathSciNet  MATH  Google Scholar 

  7. Stratford BS (1959) An experimental flow with zero skin-friction throughout its region of pressure rise. J Fluid Mech 5:17–35

    Article  MathSciNet  MATH  Google Scholar 

  8. Launder BE, Spalding DB (1974) The numerical computation of turbulent flow. Comput Methods Appl Mech Eng 3:269–289

    Article  MATH  Google Scholar 

  9. Craft TJ, Gerasimov AV, Iacovides H, Launder BE (2002) Progress in the generalization of wall-function treatments. Int J Heat Fluid Flow 23:148–160

    Article  Google Scholar 

  10. Popovac M, Hanjalic K (2007) Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turbul Combust 78:177–202

    Article  MATH  Google Scholar 

  11. Fontoura Rodrigues JLA, Gontijo RG, Soares DV (2013) A new algorithm for the implementation of wall-functions in high Reynolds number simulations. J Braz Soc Mech Sci Eng 35:391–406

    Article  Google Scholar 

  12. Andersen PS, Kays WM, Moffat RJ (1972) The turbulent boundary layer on a porous plate: an experimental study of the fluid mechanics for adverse free-stream pressure gradients. HMT Report No 15 Stanford University

  13. Purtell LP, Klebanoff PS, Buckley FT (1981) Turbulent boundary layer at low Reynolds number. Phys Fluids 24:802–811

    Article  Google Scholar 

  14. Yajnik KS (1970) Asymptotic theory of turbulent shear flow. J Fluid Mech 42:411–427

    Article  MATH  Google Scholar 

  15. Sychev VV, Sychev VV (1987) On turbulent boundary layer structure. PMM USSR 51:462–467

    MathSciNet  MATH  Google Scholar 

  16. Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers. Academic Press, New York

    MATH  Google Scholar 

  17. Coles D (1956) The law of the wake in turbulent boundary layers. J Fluid Mech 1:191–226

    Article  MathSciNet  MATH  Google Scholar 

  18. Reichardt H (1940) Die Wärmeübertragung in Turbulenten Reibungschichten. ZaMM 20:297

    Article  MathSciNet  MATH  Google Scholar 

  19. Rotta J (1950) Das in Wandnahe giiltige Geschwindigkeitsgesetz turbulenter Stromungen. J Ing-Arch 18:277–280

  20. Van Driest ER (1956) On turbulent flow near a wall. J Aeronaut Sci 23:1007

    Article  MATH  Google Scholar 

  21. Rannie WD (1956) Heat transfer in turbulent shear flow. J Aeronaut Sci 23:485

    Article  MathSciNet  MATH  Google Scholar 

  22. Spalding DB (1961) A single formula for the law of the wall. J Appl Mech 83:455–458

    Article  MATH  Google Scholar 

  23. Rasmussen ML (1975) On compressible turbulent boundary layers in the presence of favorable pressure gradients. ASME paper 75-WA/HT-53

  24. Musker AJ (1979) Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J 17:655–657

    Article  MATH  Google Scholar 

  25. Kline SJ, Reynolds WC, Schraub FA, Rundstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30:41–72

    Article  Google Scholar 

  26. Kovasznay LSG (1967) Structure of the turbulent boundary layer. Phys Fluids Suppl S25–S30

  27. Haritonidis JH (1989) A model for near wall turbulence. Phys Fluids A 1:302–306

    Article  Google Scholar 

  28. Yakhot A, Khait VD, Orszag SA (1993) Analytic expression for the universal logarithmic velocity law. J Fluids Eng 115:532–534

    Article  Google Scholar 

  29. Barenblatt GI (1993) Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. J Fluid Mech 248:513–520

    Article  MathSciNet  MATH  Google Scholar 

  30. Nikuradze J (1932) Gesetzmässigkeiten der turbulenten Strömung in glatten Rohren. Forschung ad Geb Ing, No 356

  31. Eckhaus W (1994) Fundamental concepts of matching. SIAM Rev 36:431–439

    Article  MathSciNet  MATH  Google Scholar 

  32. Eckhaus W (1973) Asymptotic analysis of singular perturbations. North-Holland, Amsterdam

    MATH  Google Scholar 

  33. Kaplun S (1967) Fluid mechanics and singular perturbations. Academic Press, New York

    Google Scholar 

  34. Lagerstrom PA, Casten RG (1972) Basic concepts underlying singular perturbation techniques. SIAM Rev 14:63–120

    Article  MathSciNet  MATH  Google Scholar 

  35. Lagerstrom PA (1988) Matched asymptotic expansions. Springer Verlag, Heidelberg

    Book  MATH  Google Scholar 

  36. Silva Freire AP, Hirata MH (1990) Approximate solutions to singular perturbation problems: the intermediate variable technique. J Math Anal Appl 145:241–253

    Article  MathSciNet  MATH  Google Scholar 

  37. Silva Freire AP (1996) On Kaplun limits and the asymptotic structure of the turbulent boundary layers. J Braz Soc Mech Sci (RBCM) 18:80–87

    Google Scholar 

  38. Silva Freire AP (1999) On Kaplun limits and the multi-layered asymptotic structure of the turbulent boundary layer. Hybrid Met Eng 1:185–216

    Google Scholar 

  39. Mellor GL (1972) The large Reynolds number asymptotic theory of turbulent boundary layers. Int J Eng Sci 10:851–873

    Article  MathSciNet  Google Scholar 

  40. Bush WB, Fendell FE (1972) Asymptotic analysis of turbulent channel and boundary layer flows. J Fluid Mech 56:657–681

    Article  MATH  Google Scholar 

  41. Deriat E, Guiraud JP (1986) On the asymptotic description of turbulent boundary layers. J Theor Appl Mech Special Issue 109–140

  42. Meyer RE (1967) On the approximation of double limits by single limits and the Kaplun extension theorem. J Inst Math Appl 3:245–249

    Article  MathSciNet  MATH  Google Scholar 

  43. Kaplun S, Lagerstrom PA (1957) Asymptotic expansions of Navier–Stokes solutions for small Reynolds numbers. J Math Mech 6:585–593

    MathSciNet  MATH  Google Scholar 

  44. Cruz DOA, Silva Freire AP (1998) On single limits and the asymptotic behavior of separating turbulent boundary layers. Int J Heat Mass Transf 41:2097–2111

    Article  MATH  Google Scholar 

  45. Kistler AL (1959) Fluctuation measurements in a supersonic turbulent boundary layer. Phys Fluids 2:290–296

    Article  MATH  Google Scholar 

  46. Kistler AL, Chen WS (1963) A fluctuating pressure field in a supersonic turbulent boundary layer. J Fluid Mech 16:41–64

    Article  MATH  Google Scholar 

  47. Loureiro JBR, Silva Freire AP (2011) Scaling of turbulent separating flows. Int J Eng Sci 49:397–410

    Article  MathSciNet  MATH  Google Scholar 

  48. Liou MS, Adamson TC (1980) Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part II: wall shear stress. ZaMP 31:227–246

    Article  MATH  Google Scholar 

  49. Silva Freire AP (1988) An asymptotic approach for shock-wave/transpired turbulent boundary layer interactions. ZaMP 39:478–503

    Article  MATH  Google Scholar 

  50. Silva Freire AP (1989) A detailed review of a solution procedure for shock-wave transpired turbulent boundary layer interaction problems. J Braz Soc Mech Sci (RBCM) 11:211–246

    Google Scholar 

  51. Silva Freire AP (1989) On the matching conditions for a two-deck compressible turbulent boundary layer model. ZaMM 69:100–104

    Article  MathSciNet  MATH  Google Scholar 

  52. Afzal N (1973) A higher order theory for compressible turbulent boundary layers at moderately large Reynolds number. J Fluid Mech 57:1–27

    Article  MATH  Google Scholar 

  53. Melnik RE, Grossman B (1974) Analysis of the interaction of a weak normal shock wave with a turbulent boundary layer. AIAA paper No 74-598

  54. Adamson TC, Feo A (1975) Interaction between a shock wave and a turbulent boundary layer at transonic speeds. SIAM J Appl Math 29:121–145

    Article  MATH  Google Scholar 

  55. Morkovin MV (1962) Effects of compressibility on turbulent flows. International symposium on “Mecanique de la turbulence” 1962

  56. Crocco L (1963) Transformations of the compressible turbulent boundary layer with heat exchange. AIAA J 1:2723–2731

    Article  MathSciNet  MATH  Google Scholar 

  57. van Driest ER (1951) Turbulent boundary layer in compressible fluid. J Aeronaut Sci 18:145–160

    Article  MathSciNet  MATH  Google Scholar 

  58. Maise G, McDonald H (1968) Mixing length and kinematic eddy viscosity in a compressible boundary layer. AIAA J 6:73–80

    Article  Google Scholar 

  59. Silva Freire AP (1988) An asymptotic solution for transpired incompressible turbulent boundary layers. Int J Heat Mass Transf 31(5):1011–1021

    Article  MATH  Google Scholar 

  60. Loureiro JBR, Silva Freire AP (2011) Slug flow in horizontal pipes with transpiration at the wall. J Phys Conf Ser 318:022014–022024

    Article  Google Scholar 

  61. Bandeira FJS, Loureiro JBR, Silva Freire AP (2015) Pressure drop and turbulence statistics in transpired pipe fow. In: 15th European turbulence conference, August, Delft, 2015

  62. Squire LC (1969) A law of the wall for compressible turbulent boundary layers with air injection. J Fluid Mech 37:449–456

    Article  Google Scholar 

  63. Silva Freire AP (1988) An extension of the transpired skin-friction equation to compressible turbulent boundary layers. Int J Heat Mass Transf 31(11):2395–2398

    Article  Google Scholar 

  64. Avelino M, Su J, Silva Freire AP (1999) An analytical near wall solution for the \(\kappa\)\(\epsilon\) model for transpired boundary layer flows. Int J Heat Mass Transf 42:3085–3096

    Article  MATH  Google Scholar 

  65. Medeiros MAF, Silva Freire AP (1992) The transfer of heat in turbulent boundary layers with injection or suction: universal laws and Stanton number equations. Int J Heat Mass Transf 35(4):991–992

    Article  Google Scholar 

  66. Whitten DG, Kays WM, Moffat RJ (1967) The turbulent boundary layer on a porous plate: experimental heat transfer with variable suction, blowing and surface temperature. Stanford University Report No. HMT-3

  67. Silva Freire AP, Cruz DOA, Pellegrini CC (1995) Velocity and temperature distributions in compressible turbulent boundary layers with heat and mass transfer. Int J Heat Mass Transf 38(13):2507–2515

    Article  MATH  Google Scholar 

  68. Danberg JE (1967) Characteristics of the turbulent boundary layer with heat and mass transfer: data tabulation. NOLTR 675-6

  69. Squire LC (1970) Further experimental investigations of compressible turbulent boundary layers with air injection. ARC R&M No. 3627

  70. Mabey DG, Meier HV, Sawyer WG (1974) Experimental and theoretical studies of the boundary layer on a flat plate at Mach numbers from 2.5 to 4.5. RAE TR 74127

  71. Winter KG, Gaudet L (1973) Turbulent boundary layer studies at high Reynolds numbers at Mach numbers between 0.2 and 2.8. ARC R&M No. 3712

  72. Schlichting H (1979) Boundary layer theory. McGraw Hill, New York

    MATH  Google Scholar 

  73. Perry AE, Schofield WH, Joubert PN (1969) Rough-wall turbulent boundary layers. J Fluid Mech 37:383–413

    Article  Google Scholar 

  74. Perry AE, Joubert PN (1963) Rough-wall boundary layers in adverse pressure gradients. J Fluid Mech 17:193–211

    Article  MATH  Google Scholar 

  75. Antonia RA, Luxton RE (1971) The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough. J Fluid Mech 48:721–761

    Article  Google Scholar 

  76. Avelino M, Silva Freire AP (2002) On the displacement in origin for turbulent boundary layers subjected to sudden changes in wall temperature and roughness. Int J Heat Mass Transf 45:3143–3153

    Article  MATH  Google Scholar 

  77. Loureiro JBR, Silva Freire AP (2014) Transient thermal boundary layers over rough surfaces. Int J Heat Mass Transf 71:217–227

    Article  Google Scholar 

  78. Loureiro JBR, Sousa FBCC, Zotin JLZ, Silva Freire AP (2010) The distribution of wall shear stress downstream of a change in roughness. Int J Heat Fluid Flow 31:785–793

    Article  Google Scholar 

  79. Owen PR, Thomson WR (1963) Heat transfer across rough surfaces. J Fluid Mech 15:321–334

    Article  MATH  Google Scholar 

  80. Malhi Y (1996) The behaviour of the roughness length for the temperature over heterogeneous surfaces. Q J R Meteorol Soc 122:1095–1125

    Article  Google Scholar 

  81. Sun J (1999) Diurnal variations of thermal roughness height over a grassland. Boundary-Layer Meteorol 92:407–427

    Article  Google Scholar 

  82. Raupach MR (1979) Anomalies in flux-gradient relationships over forest. Boundary-Layer Meteorol 16:467–486

    Article  Google Scholar 

  83. Jackson PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15–25

    Article  MATH  Google Scholar 

  84. Loureiro JBR, Soares DV, Fontoura Rodrigues JLA, Pinho FT, Silva Freire AP (2007) Water tank and numerical model studies of flow over steep smooth two-dimensional hills. Boundary-Layer Meteorol 122:343–365

    Article  Google Scholar 

  85. Loureiro JBR, Pinho FT, Silva Freire AP (2007) Near wall characterization of the flow over a two-dimensional steep smooth hill. Exp Fluids 42:441–457

    Article  Google Scholar 

  86. Na Y, Moin P (1998) Direct numerical simulation of a separated turbulent boundary layer. J Fluid Mech 374:379–405

    Article  MathSciNet  MATH  Google Scholar 

  87. Cruz DOA, Silva Freire AP (2002) Note on a thermal law of the wall for separating and recirculating flows. Int J Heat Mass Transf 45:1459–1465

    Article  MATH  Google Scholar 

  88. Mellor GL (1966) The effects of pressure gradients on turbulent flow near a smooth wall. J Fluid Mech 24:255–274

    Article  Google Scholar 

  89. Nakayama A, Koyama H (1984) A wall law for turbulent boundary layers in adverse pressure gradients. AIAA J 22:1386–1389

    Article  MATH  Google Scholar 

  90. Loureiro JBR, Monteiro AS, Pinho FT, Silva Freire AP (2008) Water tank studies of separating flow over rough hills. Boundary-Layer Meteorol 129:289–308

    Article  Google Scholar 

  91. Loureiro JBR, Monteiro AS, Pinho FT, Silva Freire AP (2009) The effect of roughness on separating flow over two-dimensional hills. Exp Fluids 46:577–596

    Article  Google Scholar 

  92. Loureiro JBR, Silva Freire AP (2009) Note on a parametric relation for separating flow over a rough hill. Boundary-Layer Meteorol 131:309–318

    Article  Google Scholar 

  93. Nieuwland GY, Spee BM (1973) Transonic airfoils: recent developments in the theory, experiment and design. Ann Rev Fluid Mech 5:118–150

    Article  MATH  Google Scholar 

  94. Nagamatsu HT, Ficarra RV, Dyer R (1985) Supercritical airfoli drag reduction by passive shock wave/boundary layer control in the Mach number range 0.75 to 0.90. AIAA paper 85-0207

  95. Lighthill MJ (1953) On boundary layer upstream influence. Part II: supersonic flow without separation. Proc R Soc Lond A 217:478–507

    Article  MATH  Google Scholar 

  96. Melnik RE (1981) Turbulent interactions on airfoils at transonic speeds: recent developments. In: Symposium on computation of viscous-inviscid flows. Paper 10, 1981

  97. Messiter AF (1980) Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part I: pressure distribution. ZaMP 31:204–227

    Article  MATH  Google Scholar 

  98. Sawyer WG, Long, CJ (1982) A study of normal shock-wave turbulent boundary layer interactions at Mach numbers 1.3, 1.4 and 1.5. RAE TR No 82099

  99. Bark FH (1975) On the wave structure of the wall region of a turbulent boundary layer. J Fluid Mech 70:229–250

    Article  Google Scholar 

  100. Hatziavramidis DT, Hanratty TJ (1979) The representation of the viscous wall region by a regular eddy pattern. J Fluid Mech 95:655–679

    Article  MATH  Google Scholar 

  101. Chapman DR, Kuhn GD (1986) The limiting behaviour of turbulence near a wall. J Fluid Mech 170:265–292

    Article  MATH  Google Scholar 

  102. Walker JDA, Abbott DE, Scharnhorst RK, Weigand GG (1989) Wall-layer model for the velocity profile in turbulent flow. AIAA J 27:140–149

    Article  Google Scholar 

  103. Landahl MY (1990) On sublayer streaks. J Fluid Mech 212:593–614

    Article  MATH  Google Scholar 

  104. Mikhailov MD, Silva Freire AP (2014) Feasible domain of Walker’s unsteady wall-layer model for the velocity profile in turbulent flows. Ann Braz Acad Sci 86(4):2121–2135

    Article  MathSciNet  Google Scholar 

  105. Mikhailov MD, Silva Freire AP (2012) The Walker function. Math J 14:1–9

    Google Scholar 

  106. Metzner AB, Reed JC (1955) Flow on non-Newtonian fluids—correlation of the laminar, transition and turbulent-flow regimes. AIChE J 1:434–440

    Article  Google Scholar 

  107. Dodge DW, Metzner AB (1959) Turbulent flow of non-Newtonian systems. AIChE J 5:189–204

    Article  Google Scholar 

  108. Clapp RM (1961) Turbulent heat transfer in pseudoplastic non-Newtonian fluids. Int Dev Heat Transf, Part III, ASME, NewYork, pp 652–661

  109. Bogue DC, Metzner AB (1963) Velocity profiles in turbulent pipe flow. Ind Eng Chem (Fundam) 2:143–149

    Article  Google Scholar 

  110. Loureiro JBR, Silva Freire AP (2013) Asymptotic analysis of turbulent boundary-layer flow of purely viscous non-Newtonian fluids. J Non-Newton Fluid Mech 199:20–28

    Article  Google Scholar 

  111. Escudier MP, Presti F (1996) Pipe flow of a thixotropic fluid. J Non-Newton Fluid Mech 62:291–306

    Article  Google Scholar 

  112. Pereira AS, Pinho FT (2002) Turbulent pipe flow of thixotropic fluids. Int J Heat Fluid Flow 23:36–51

    Article  Google Scholar 

  113. Anbarlooei HR, Cruz DOA, Silva Freire AP (2015) Fully turbulent mean velocity profile for purely viscous non-Newtonian fluids. In: 15th European turbulence conference, August, Delft, 2015

  114. Japper-Jaafar A, Escudier MP, Poole RJ (2009) Turbulent pipe flow of a drag-reducing rigid “rod-like” polymer solution. J Non-Newton Fluid Mech 161:86–93

    Article  MATH  Google Scholar 

  115. Özdemir IB, Whitelaw JH (1992) Impingement of an axisymmetric jet on unheated and heated flat plates. J Fluid Mech 24:503–532

    Article  Google Scholar 

  116. Loureiro JBR, Silva Freire AP (2012) Wall shear stress measurements and parametric analysis of impinging wall jets. Int J Heat Mass Transf 55:6400–6409

    Article  Google Scholar 

  117. Wygnanski I, Katz Y, Horev E (1992) On the applicability of various scaling laws to the turbulent wall jet. J Fluid Mech 234:669–690

    Article  Google Scholar 

  118. Guerra DRS, Su J, Silva Freire AP (2005) The near wall behaviour of an impinging jet. Int J Heat Mass Transf 48:2829–2840

    Article  Google Scholar 

  119. Narasimha R, Narayan KY, Pathasarathy SP (1973) Parametric analysis of turbulent wall jets in still air. Aeronaut J 77:335–339

    Google Scholar 

  120. Su J, Silva Freire AP (2002) Analytical prediction of friction factors and Nusselt numbers of turbulent forced convection in rod bundles with smooth and rough surfaces. Nucl Eng Des 217:111–127

    Article  Google Scholar 

  121. Brasil W, Su J, Silva Freire AP (2004) An inverse problem for the estimation of upstream velocity profiles in an incompressible turbulent boundary layer. Int J Heat Mass Transf 47:1267–1274

    Article  MATH  Google Scholar 

  122. Loureiro JBR, Silva Freire AP (2005) Experimental investigation of turbulent boundary layers over steep two-dimensional elevations. J Braz Soc Mech Sci Eng 27:329–344

    Article  Google Scholar 

  123. Loureiro JBR, Alho A, Silva Freire AP (2008) The numerical computation of near-wall turbulent flow over a steep hill. J Wind Eng Ind Aerodyn 96:540–561

    Article  Google Scholar 

  124. Loureiro JBR, Silva Freire AP (2011) Flow over riblet curved surfaces. J Phys Conf Ser 318:022035–022045

    Article  Google Scholar 

  125. Silva Freire AP, Avelino MR, Santos LCC (1998) The state of the art in turbulence modelling in Brazil. J Braz Soc Mech Sci (RBCM) 20(1):1–38

    Google Scholar 

Download references

Acknowledgments

Many people have contributed to the results discussed in the present work. Their relative importance is easily recognized through a casual inspection of the list of references. To these people—most of them my former students—I owe my gratitude. Specifically, most of the figures shown in this review have been prepared by Dr. J.B.R. Loureiro. Thank you for this particular effort. APSF is grateful to the Brazilian National Research Council (CNPq) for the award of a Research Fellowship (Grant No. 305338/2014-5). The work was financially supported by CNPq through Grants No. 477293/2011-5 and by the Rio de Janeiro Research Foundation (FAPERJ) through Grant E-26/102.937/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atila P. Silva Freire.

Additional information

Technical Editor: Francisco Ricardo Cunha.

The work is dedicated to Dr. Sergio Luis Villares Coelho, who would have had a brilliant professional carrier, had not departed the planet Earth in October 1989 at the very early age of 32 after a long struggle against cancer. The longer the elapsed time, the more his absence is felt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva Freire, A.P. The persistence of logarithmic solutions in turbulent boundary layer systems. J Braz. Soc. Mech. Sci. Eng. 38, 1359–1399 (2016). https://doi.org/10.1007/s40430-015-0433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0433-2

Keywords

Navigation