Skip to main content

Advertisement

Log in

Robust control for horizontal plane motions of autonomous underwater vehicles

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Nowadays autonomous underwater vehicles (AUVs) are employed as unmanned machines in ocean industries. For instance AUVs play an important role in coastal area monitoring and investigating underwater pipe line in deep seas. In this paper, navigation of an AUV near free surface and the effect of wave disturbance and un-modeled hydrodynamics as uncertain terms in control system are addressed. To stabilize the roll motion of the vehicle a practical control mode in mini-UVs is applied. Firstly, a 6-DOF nonlinear dynamic simulator is developed and dynamic stability of the vehicle is investigated. Then, a feedback linearization method is applied to turn the nonlinear system into a convenient linear one, and then a robust technique is applied to guarantee the stability and performance of the system. In addition, a genetic algorithm method is employed for achieving the best gains in feedback linearization control law. Three constraints are considered for optimization including amplitude of sway, yaw and roll motions. Final results show an effective motion control of the AUV in horizontal plane. Meanwhile a reasonable performance of robust control in presence of wave disturbance and un-modeled hydrodynamics is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\left[ {I_{xx} ,I_{yy} ,I_{zz} } \right]\) :

Mass moment (kg m2)

\(\left[ {x_{\text{g}} ,y_{\text{g}} ,z_{\text{g}} } \right]\) :

Location of center of mass (m)

\(\left[ {X_{u\left| u \right|} , Y_{v\left| v \right|} , Z_{w|w|} } \right]\) :

Drag (kg/m)

\(\left[ {X_{{\dot{u}}} ,Y_{{\dot{v}}} ,Y_{{\dot{r}}} ,Z_{{\dot{w}}} ,Z_{{\dot{q}}} } \right]\) :

Added mass (kg)

\(\left[ {K_{{\dot{p}}} ,M_{{\dot{w}}} ,M_{{\dot{q}}} ,N_{{\dot{v}}} ,N_{{\dot{r}}} } \right]\) :

Added mass (kg)

\(\left[ {X_{wq} , X_{qq} , X_{rr} , X_{vr} } \right]\) :

Added mass cross-term (kg/rad)

\(\left[ {Y_{r\left| r \right|} , Y_{wp} , Y_{pq} } \right]\) :

Added mass cross-term (kg/rad)

\(\left[ {Z_{q\left| q \right|} , Z_{vp} , Z_{rp} } \right]\) :

Added mass cross-term (kg/rad)

\(\left[ {Y_{ur} , Z_{uq} } \right]\) :

Added mass cross-term and fin lift (kg/rad)

\(\left[ {Y_{uv} , Z_{uw} } \right]\) :

Added mass cross-terms, fin lift and drag (kg/rad)

\(\left[ {X_{\text{HS}} , Y_{\text{HS}} , Z_{\text{HS}} } \right]\) :

Hydrostatic forces (kg)

\(X_{\text{prop}}\) :

Propeller thrust (N)

\(\left[ {Y_{uu\delta r} , Z_{uu\delta s} } \right]\) :

Fin lift force [kg/(m rad)]

\(\left[ {K_{p\left| p \right|} , M_{q\left| q \right|} , N_{r|r|} } \right]\) :

Added mass cross-term (kg/rad)

\(\left[ {M_{vp} , M_{rp} , N_{pq} , N_{wp} } \right]\) :

Added mass cross-term (kg/rad)

\(\left[ {K_{\text{HS}} , M_{\text{HS}} , N_{\text{HS}} } \right]\) :

Hydrostatic moment (kg/rad)

\(\left[ {M_{w\left| w \right|} , N_{uv} } \right]\) :

Body and fin munk moment (kg)

\(\left[ {M_{uq} , N_{ur} } \right]\) :

Added mass cross term and fin lift (kg m/rad)

\(K_{\text{prop}}\) :

Propeller torque (Nm)

\(N_{uu\delta r}\) :

Fin lift moment (kg/rad)

m :

Mass (kg)

L :

Length (m)

R :

Hull radius (m)

z :

Heave displacement (m)

u :

Surge speed (m/s)

v :

Sway speed (m/s)

w :

Heave speed (m/s)

\(\phi\) :

Roll angle (deg)

\(\theta\) :

Pitch angle (deg)

\(\psi\) :

Yaw angle (deg)

p :

Roll angular speed (rad/s)

q :

Pitch angular speed (rad/s)

r :

Yaw angular speed (rad/s)

\(\delta_{r}\) :

Rudder angle (deg)

\(\delta_{s}\) :

Stern plane angle (deg)

\(M_{\text{wave}}\) :

Wave moment (Nm)

\(M_{r}\) :

Rudder righting moment (Nm)

\(M_{\delta }\) :

Stern plane moment (Nm)

\(\gamma\) :

Wave encounter angle (deg)

References

  1. Fossen TI, Fjellstad OE (1995) Nonlinear modelling of marine vehicles in 6 degrees of freedom. Math Model Syst 1(1):17–27

    Article  Google Scholar 

  2. Prestero TTJ (2001) Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle. Massachusetts Institude of Technology, Massachusetts

    Book  Google Scholar 

  3. Perrault D, Bose N, O’Young S, Williams CD (2003) Sensitivity of AUV response to variations in hydrodynamic parameters. Ocean Eng 30(6):779–811

    Article  Google Scholar 

  4. Buckham B, Nahon M, Seto M, Zhao X, Lambert C (2003) Dynamics and control of a towed underwater vehicle system, part I: model development. Ocean Eng 30(4):453–470

    Article  Google Scholar 

  5. Evans J, Nahon M (2004) Dynamics modeling and performance evaluation of an autonomous underwater vehicle. Ocean Eng 31(14):1835–1858

    Article  Google Scholar 

  6. Issac MT, Adams S, He M, Bose N, Williams CD, Bachmayer R, Crees T (2007) Manoeuvring experiments using the MUN Explorer AUV. In: symposium on underwater technology and workshop on scientific use of submarine cables and related technologies, Tokyo

  7. Watt GD (2007) Modeling and simulating unsteady six degrees-of-freedom submarine rising maneuvers. Defence Research and Development Organisation, Canada

    Google Scholar 

  8. Jun BH, Park JYF, Lee Y, Lee PM, Lee CM, Kim K, Lim YK, Oh JH (2009) Development of the AUV ‘ISiMI’ and a free running test in an ocean engineering basin. Ocean Eng 36(1):2–14

    Article  Google Scholar 

  9. Bettle MC, Gerber AG, Watt GD (2009) Unsteady analysis of the six DOF motion of a buoyantly rising submarine. Comput Fluids 38(9):1833–1849

    Article  MATH  Google Scholar 

  10. Jinxin Z, Yumin S, Lei J, Jian C (2011) Hydrodynamic performance calculation and motion simulation of an AUV with appendages. Electronic and Mechanical Engineering and Information Technology (EMEIT), Harbin

    Book  Google Scholar 

  11. Xu F, Zou Z, Yin J (2012) On-line modeling of AUV’s maneuvering motion in diving plane based on SVM. In: Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece

  12. Yi R, Hu Z, Lin Y, Gu H, JI D, Liu J, Wang C (2013) Maneuverability design and analysis of an autonomous underwater vehicle for deep-sea hydrothermal plume survey. In: OCEANS 2013 MTS/IEEE, San Diego

  13. Rattanasiri P, Wilson PA, Phillips AB (2014) Numerical investigation of a fleet of towed AUVs. Ocean Eng 80:25–35

    Article  Google Scholar 

  14. Gertler M, Hagen GR (1967) Standard equations of motion for submarine simulation. In: David W Taylor Naval Ship Research and Development Center, Bethesda

  15. Nahon M (1996) A simplified dynamics model for autonomous underwater vehicles. In: Symposium on Autonomous Underwater Vehicle Technology, Monterey

  16. Song F, An PE, Folleco A (2003) Modeling and simulation of autonomous underwater vehicles: design and implementation. Ocean Eng IEEE J 28(2):283–296

    Article  Google Scholar 

  17. Ridley P, Fontan J, Corke P (2003) Submarine dynamic modelling. In: Australasian Conference on Robotics and Automation

  18. Kim K, Choi HS (2007) Analysis on the controlled nonlinear motion of a test bed AUV-SNUUV I. Ocean Eng 34(8–9):1138–1150

    Article  Google Scholar 

  19. Hegrenaes O, Hallingstad O, Jalving B (2007) A framework for obtaining steady-state maneuvering characteristics of underwater vehicles using sea-trial data. In: Control and Automation, 2007 (MED’07) Mediterranean Conference on IEEE, Athens

  20. Park JY, Jun BH, Lee PM, Oh J (2008) Development of test-bed AUV ‘ISiMI’ and underwater experiments on free running and vision guided docking. In: Underwater vehicles. Vienna, pp 371–399

  21. Wang B, Wan L, Xu Y, Qin ZB (2009) Modeling and simulation of a mini AUV in spatial motion. Mar Sci Appl 8(1):7–12

    Article  Google Scholar 

  22. Dantas JLD, de Barros EA (2010) A real-time simulator for AUV development. ABCM Symposium series in Mechatronics, vol 4, pp 499–508

  23. Sanyal A, Nordkvist N, Chyba M (2011) An almost global tracking control scheme for maneuverable autonomous vehicles and its discretization. Autom Control IEEE Trans 56(2):457–462

    Article  MathSciNet  Google Scholar 

  24. Kim YG, Yun KH, Kim SY, Kim DJ (2012) Captive model test of submerged body using CPMC. J Soc Naval Archit Korea 49(4):296–303

    Article  Google Scholar 

  25. Philips AB, Steenson LV, Harris CA, Rogers E, Turnock SR, Furlong M (2013) Delphin2: an over actuated autonomous underwater vehicle for manoeuvring research. Trans R Inst Naval Archit Part A Inter J Marit Eng 155(A4):171–180

    Google Scholar 

  26. Zhang JT, Maxwell JA, Gerber AG, Holloway AGL, Watt GD (2013) Simulation of the flow over axisymmetric submarine hulls in steady turning. Ocean Eng 57:180–196

    Article  Google Scholar 

  27. Dantas JLD, da Silva Vale RTS, de Oliveira LM, Pinheiro ARM, de Barros EA (2013) Experimental research on underwater vehicle manoeuvrability using the AUV Pirajuba. In: International Congress of Mechanical Engineering (COBEM 2013), Ribeirão Preto-SP, Brasil

  28. Chen CW, Kouh JS, Tsai JF (2013) Maneuvering modeling and simulation of AUV dynamic systems with Euler-Rodriguez quaternion method. China Ocean Engineering 27(3):403–416

    Article  Google Scholar 

  29. Miller L, Von Ellenrieder K (2013) Modeling and simulation of an AUV-Towfish system. In: Oceans, San Diego

  30. Zanoni FD, Barros AD (2014) A real-time navigation system for autonomous underwater vehicle. J Braz Soc Mech Sci Eng pp 1–17

  31. Healey AJ, Lienard D (1993) Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. Ocean Eng IEEE J 18(3):327–339

    Article  Google Scholar 

  32. Fjellstad OE, Fossen T (1994) Position and attitude tracking of AUV’s: a quaternion feedback approach. Ocean Eng IEEE J 19(4):512–518

    Article  Google Scholar 

  33. Encarnacao P, Pascoal A (2000) 3D path following for autonomous underwater vehicle. In: 39 th IEEE Conference on Decision and Control, Sydney

  34. Jeon BH, Lee PM, Li JH, Hong SW, Kim YG, Lee J (2003) Multivariable optimal control of an autonomous underwater vehicle for steeringand diving control in variable speed. In: Ocean Conference, San Diego

  35. Chen C, Kouh J, Tsai J (2010) A web-based real-time simulator for submarine maneuvering. In: The 6th International Workshop on Ship Hydrodynamics (IWSH’2010), Harbin

  36. Subudhi B, Mukherjee K, Ghosh S (2013) A static output feedback control design for path following of autonomous underwater vehicle in vertical plane. Ocean Eng 63:72–76

    Article  Google Scholar 

  37. Kuhn VN, Drews PLJ, Gomes SCP, Cunha MAB, Botelho S (2013) Automatic control of a ROV for inspection of underwater structures using a low-cost sensing. J Braz Soc Mech Sci Eng 37(1):361–374

    Article  Google Scholar 

  38. Ting L, Dexin Z, Zhiping H, Chunwu L, Shaojing S (2014) A wavelet-based grey particle filter for self-estimating the trajectory of manoeuvring autonomous underwater vehicle. Trans Inst Meas Control 36(3):321–335

    Article  Google Scholar 

  39. Moreira L, Soares CG (2008) H2 and H-infinity designs for diving and course control of an autonomous underwater vehicle in presence of waves. Ocean Eng 33(2):69–88

    Article  Google Scholar 

  40. Liu S, Wang D, Poh E (2009) Output feedback control design for station keeping of AUVs under shallow water wave disturbances. Int J Robust Nonlinear Control 19(13):1447–1470

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu S, Wang D, Poh E (2008) Non-linear output feedback tracking control for AUVs in shallow wave disturbance condition. Int J Control 81(11):1806–1823

    Article  MathSciNet  MATH  Google Scholar 

  42. Kamarlouei M (2014) Manuevering simulation and controller design for autonomous underwater vehicles, master Thesis, Department of Ocean Engineering, Amirkabir University of Technology

  43. Boutat D, Kratz F, Barbot JP (2009) Observavility Brunovsky normal form: multi-output linear dynamical systems. In: American Control Conference, USA

Download references

Acknowledgments

This research was supported by the Marine Research Center of Amirkabir University of Technology whose works are greatly acknowledged. The authors would gratefully like to thank the reviewers for their comments that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ghassemi.

Additional information

Technical Editor: Celso Kazuyuki Morooka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamarlouei, M., Ghassemi, H. Robust control for horizontal plane motions of autonomous underwater vehicles. J Braz. Soc. Mech. Sci. Eng. 38, 1921–1934 (2016). https://doi.org/10.1007/s40430-015-0403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0403-8

Keywords

Navigation