Skip to main content
Log in

Steady state of ion transport in homopolar ion-exchange membrane: a theoretical study

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

We conducted a theoretical study of ion transport through a polar cationic membrane subjected to the action of an electric field. We solved the transport equation without the usual electroneutrality assumption. We investigated the validity of the constant field approximation in the study of ion transport across a membrane and analyzed the case in which the membrane’s charge density is constant. We have shown, by numerical simulations, that the PS model (Sistat and Pourcelly, J Elec Chem 460:53, 1999) does not reproduce the three regimes of polarization curve mode. We also proposed an alternative approach to the problem based on Mean Field approximation. Our approach reproduces qualitatively better the well-known behavior of the polarization curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ayala-Bribiesca E, Pourcelly G, Bazinet L (2007) Nature identification and morphology characterization of anion-exchange membrane fouling during conventional electrodialysis. J Colloid Interface Sci 308:182–190

    Article  Google Scholar 

  2. Bard AJ, Faulkner LR (2000) Electrochemical methods fundamentals and applications, 2nd edn. John Wiley & Sons Inc, New York

    Google Scholar 

  3. Dalla Costa RF, Rodrigues MAS, Zoppas Ferreira J (1998) Transport of trivalent and hexavalent chromium through different ion-selective membranes in acidic aqueous media. Sep Sci Technol 33(8):1135

    Article  Google Scholar 

  4. Ferreira CA, Casanovas J, Rodrigues MAS, Muller F, Armelin E, Alemán C (2010) Transport of metallicions through polyaniline-containing composite membranes. J Chem Eng Data 55:4801–4807

    Article  Google Scholar 

  5. Moura RCA, Bertuol DA, Ferreira CA, Franco DR, Amado FDR (2012) Study of chromium removal by the electrodialysis of tannery and metal finishing effluents. Int J Chem Eng, Article ID 179312

  6. Noble RD, Stern SA (1995) Membrane separations and technology principles and application. Elsevier, New York, NY

    Google Scholar 

  7. Rodrigues MAS, Dalla Costa RF, Bernardes AM, Zoppas Ferreira J (2001) Influence of ligand exchange on the treatment of trivalent chromium solutions by electrodialysis. Electrochim Acta 47:753

    Article  Google Scholar 

  8. Scott K (1995) Handbook of Industrial Membranes. Elservier Advanced Technology, Oxford

    Google Scholar 

  9. Strathmann H (2005) Electrodialysis and related prosses. In: Noble RD, Stern SA (eds) Membrane Separations Technology-Principles and Applications. Elservier, New York, pp 213–281 (2005)

  10. Vallois C, Sistat P, Roualdès S, Pourcelly G (2003) Separation of H+/Cu2+ cations by electrodialysis using modified proton conducting membranes. Memb Sci 216:13–25

    Article  Google Scholar 

  11. Sistat P, Pourcelly G (1999) Steady-state ion transport through homopolar ion-exchange membranes: an analytical solution of the Nernst–Planck equations for a 1:1 electrolyte under the electroneutrality assumption. J Elec Chem 460:53–62

    Google Scholar 

  12. Vilfan I (1998) Lecture notes in statistical mechanics: the Abdus Salam ICTP diploma programme, academic year 1998–99 : condensed matter physics courses : course on statistical mechanics

  13. Feldberg SW (2000) On the dilemma of the use of the electroneutrality constraint in electrochemical calculations. Elec Chem Commun 2:453

    Article  Google Scholar 

  14. Barry DA, Parlange JY, Prommer H, Cunningham CJ, Stagnitti FM et al (2003) Analytical approximations for real values of the Lambert W-function. Math Comput Simul 53:95–103

    Article  MathSciNet  Google Scholar 

  15. Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, New York

    Google Scholar 

  16. Buck RP (1984) Kinetics of bulk and interfacial ionic motion: microscopic basis and limits for the Nernst-Planck eqautions appilied to membrane systems. J Membr Sci 17:1–62

    Article  Google Scholar 

  17. Corry B, Kuyucak S, Chung S (2000) Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. Biophys J 78:2364–2381

    Article  Google Scholar 

  18. Fíla V, Bouzek K (2008) The effect of convection in the external diffusion layer on the results of a mathematical model of multiple ion transport across an ion-selective membrane. J Appl Electrochem 38:1241–1252

    Article  Google Scholar 

  19. Nikonenko V, Zabolotsky V, Larchet C, Auclair B, Pourcelly G (2002) Mathematical description of ion transport in membrane systems. Desalination 147:369–374

    Article  Google Scholar 

  20. Rohman FS, Aziz N (2008) Steady-state space charge effects in symmetric cells with concentration polarized electrodes. Bull Chem React Eng Catal 3(1–3):3–8

    Google Scholar 

  21. Syganow A, von Kitzing E (1999) (In)validity of the constant field and constant currents assumptions in theories of ion transport. Biophys J 76:768–781

    Article  Google Scholar 

  22. Tanioka A, Matsumoto H, Yamamoto R (2004) Charge effectiveness of sulfonated polymer membranes under low-water-content condition. Sci Technol Adv Mater 5:461–468

    Article  Google Scholar 

  23. Volgin VM, Davydov AD (2005) Ionic transport through ion-exchange and bipolar membranes. J Membr Sci 259:110–121

    Article  Google Scholar 

  24. Wang J et al (2014) A critical review of transport through osmotic membranes. J Membr Sci 454:516–537

    Article  Google Scholar 

  25. Vieira IP, Oliveira AC (2015) Work in progress

Download references

Acknowledgments

The authors would like to thank the editor and the referee for the valuable comments on our submitted manuscript. A. C. O. acknowledges FAPEMIG for the partial financial support. F. D. R. A. acknowledges CNPq for the partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélcio C. Oliveira.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.C., Amado, F.D.R. & Moura, R.C.A. Steady state of ion transport in homopolar ion-exchange membrane: a theoretical study. J Braz. Soc. Mech. Sci. Eng. 38, 1165–1170 (2016). https://doi.org/10.1007/s40430-015-0357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0357-x

Keywords

Navigation