Skip to main content
Log in

Effect of interfacial powder on mechanical properties of composites under dynamic tests

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Improving resistance to delamination is still a domain of research interest for researchers and for industrials. In this paper, effects of adding metal particles at interfaces of cross ply fiber-reinforced composite plates are investigated. Composite plates with [05/902/05] configuration graphite fibers and resin epoxy matrix are produced by hand in civil engineering laboratory at the Sherbrooke University. Alumina or stainless steel powders with 40 μm diameter are added at the 00/900 interfaces. Dynamic and static tests, such as low velocity impact, fatigue, tensile and flexural tests are conducted. Throughout this work, it is shown that the addition of powder particles at the 00/900 interfaces improves resistance to delamination of laminated composites when subjected to various mechanical loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rechak S (1986) Effect of adhesive layer on impact damage in composite laminates. Ph. D Thesis, Purdue University, USA

  2. Rechak S, Sun CT (1988) Optimal use of adhesive layer in composite materials. J Compos, London

  3. Oréfice RL, Hench LL, Brennan AB (2001) Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites. J Braz Soc Mech Sci 23(1):1–8 Federal University of Minas Gerais, Brazil

    Article  Google Scholar 

  4. Rechak S, Sun CT (1989) Use of adhesive layer to stop crack propagation in composite materials. International Conference on Composite Materials, Glasgow

    Google Scholar 

  5. Rechak S, Sun CT (1984) Use of adhesive layer in composite materials. J ASTM, USA

  6. Fang S, Chung DDL (1990) Carbon fiber composites with improved fatigue resistance due to the addition of tin–lead alloy particles. Composites 21(5):419–424 State university of New York at Buffalo, USA

    Article  Google Scholar 

  7. Kim HS, Choi O, Hahn HT (1853) Graphite Fiber Composites Reinforced With Nanoparticles. J. AIAA 2006:3207–3215 University of California, Los Angeles CA 90095

    Google Scholar 

  8. Chuks NO, David CW (1999) Finite-element modelling of the impact response of a laminated composite plate. Compos Sci Technol 59(12):1913–1922

    Article  Google Scholar 

  9. Maiti DK, Sinha PK (1995) Impact behavior of thick laminated composite beams. J Reinf Plast Compos 14:255–279

    Google Scholar 

  10. Hyung YC, Downs RJ, Chang FK (1991) A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: partI-experiments. J Compos Mater 25:992–1011

    Google Scholar 

  11. Morais WA, Almeida JRM, Godefroid LB (2003) Effect of the fiber reinforcement on the low energy impact behavior of fabric reinforced resin matrix composite materials. J Braz Soc Mech Sci Eng 25(4):325–328

    Article  Google Scholar 

  12. Hiroshi S, Isao K (2005) Evaluation of impact damage mechanism of multi-axial stitched CFRP laminate. Advanced Materials Science R&D, Japan, 924–0838

  13. Lia CF, Hub N, Yina YJ, Sekinec H, Fukunagac H (2002) Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model. Compos A 33:1053–1060

    Google Scholar 

  14. Faycal M, Necib B (2001) Impact behavior of cross-ply laminated composite plates under low velocities. Compos Struct 51:237–244 Mantouri University Algeria

    Article  Google Scholar 

  15. Trudel-Boucher D (2000) Impact à faible vitesse sur un composite polypropylène/fibre de verre. Master dissertation, Montréal Polytechnic School

  16. Arup Kumar N, Shubhabrata D (2011) Improvement of soft tooling process through particle reinforcement with polyurethane mould. J Braz Soc Mech Sci 33(3):332–342

    Article  Google Scholar 

  17. Li CF, Hu N, Yin YJ, Sekine H, Fukunaga H (2002) Low-velocity impact induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model. Compos Part A 33(8):1053–1060

    Google Scholar 

  18. Shaw ML, Zahuta P (1991) Instrumented impact and static indentation of composites. Compos Mater 25:204–222

    Google Scholar 

  19. Choi HY, Chang FK (1992) A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. J Compos Mater 26:2134–2169

    Article  Google Scholar 

  20. Wang H, Vu-Khanh T (1995) Fracture mechanics and mechanisms of impact-induced delamination in laminated composites. J Compos Mater 29:156–178

    Article  Google Scholar 

  21. Lia CF, Hub N, Chenga JG, Fukunagac H, Sekinec H (2002) Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part II. Verification and numerical investigation. Compos A 33:1063–1072

    Article  Google Scholar 

  22. Hernot X, Bartier O, Bekouche Y, El Abdi R, Mauvoisin G (2006) Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation. Int J Solids Struct 43:4136–4153 University of Rennes 1

    Article  MATH  Google Scholar 

  23. Hojo A, Taiji A, Claas DJ, Bodo F (2006) Evaluation of interfacial strength in CF/epoxies using FEM and in situ experiments Thomas Hobbiebrunken. Compos A 37:2248–2256

    Article  Google Scholar 

  24. Allix O, Guédra-Degeorges G, Guinard S, Vinet A (2000) Analyse de la tenue aux impacts à faible vitesse et faible énergie des stratifiés composites par la mécanique de l’endommagement. Méc Ind 1(1):27–35

    Article  Google Scholar 

  25. Keršys A, Keršienė N, Žiliukas A(2010) Experimental research of the impact response of E-glass/epoxy and carbon/epoxy composite systems. Mater Sci 16(4)1392-1320

    Google Scholar 

  26. Tan TM, Sun CT (1982) Wave propagation in graphite/epoxy laminates due to impact. Composite Materials Laboratory of NASA CR 168057, Purdue University

  27. ASTM Designation D638-03 Standard test method for tensile properties of plastics

  28. Żółkiewski S (2011) Selection and impact o f parameters in composite materials designing. Silesian University of Technology Gliwice, Poland, 13th World Congress in Mechanism and Machine Science, Guanajuato, México, pp 19–25

  29. Taireja R (1985) Transverse cracking and stiffness reduction in composite laminates. J Compos Mater 19(4):355–375

    Article  Google Scholar 

  30. Charewicz A Daniel IM (1986) Damage mechanisms and accumulation in graphite epoxy laminates. Composite Materials: fatigue and fracture, ASTM STP 907:274–297

    Google Scholar 

  31. Lafarie-Frenot MC, Henaff-Gardin C (1990) Formation and growth of 90° ply fatigue cracks in carbon epoxy laminates. Compos Sci Technol 40(3):307–324

    Article  Google Scholar 

  32. Trudel-Boucher D, Bureau NM, Denault J, Fisa B (2003) Low-velocity impacts in continuous glass fiber/polypropylene composites. Polym Compos 24(4):499–511

    Article  Google Scholar 

  33. American Society for Testing Materials (ASTM) D 790-03 Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials

  34. Bezazi A, El mahi A, Berthelot JM, Bezazi B (2001) Analyse de l’endommagement des stratifies en flexion 3-points influence de la sequence d’empilement. 25th French Congres of Mechanics, Nancy

  35. Ashbs MF, Beaumont PWR (1986) The fatigue damage machanics of carbon fiber composite laminate: i- Development of the model. Compos Sci Technol 25:193–218

    Article  Google Scholar 

  36. Soni S, Kim RY (1986) Delamination of composite laminates stimulated by interlaminar shear. Compos Mater Test Des ASTM STP 893:286–307

    Google Scholar 

  37. Cheikh AHS (2009) Comportement en fatigue des composites monolithiques et dandwiches: detection et suivie de l’endommagement par techniques non destructives. Ph. D Thesis University of Lille, France

  38. Bezazi A, Pierce G, Worden K, Harkati H (2007) Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network. Int J Fatigue 29:738–747

    Article  Google Scholar 

  39. Belaadi A, Bezazi A, Bourchak M, Scarpa F (2013) Tensile static and fatigue behaviour of sisal fibres. Mater Des 46:76–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Mebarki.

Additional information

Technical Editor: Marcelo A. Savi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mebarki, Y., Rechak, S., Marc, D. et al. Effect of interfacial powder on mechanical properties of composites under dynamic tests. J Braz. Soc. Mech. Sci. Eng. 36, 939–949 (2014). https://doi.org/10.1007/s40430-014-0131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0131-5

Keywords

Navigation