Skip to main content
Log in

Silicophytoliths from soybean plants in different growth stages of the Argentine Pampas

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

For decades, silicophytolith and silicon (Si) studies have been conducted on plant families which produce high amounts of this compound, such as horsetails, grasses, sedges, and palms. However, in recent years, studies on low silicophytolith-producing families became relevant because of the important role this compound plays in their growth. In cultivated soils from South America, research on silicophytolith production in crops and on the availability of silicon sinks is scarce. The present study is the first report of silicophytolith production in soybean plants, using staining and calcination techniques. The silicophytolith morphologies found in leaves were tabular lobate, hair bases, long and short hairs, stomatal complexes, cylindrical sulcate tracheid, elongate with fusiform edges, articulated, and orbicular cells with thickened edges silicified; in stems, branches, pods, and flowers, the silicophytoliths were orbicular and cylindrical sulcate tracheid. Throughout their growth, these soybean crops produced 1.04, 25.12, and 40.08 kg ha-1 of silicophytoliths in vegetative (S12), reproductive (S61), and maturity stages (S89), respectively. These results will contribute to the knowledge of the amount of silica/silicophytoliths involved in the process of Si-recycling through cultivated vegetation in fields from humid plains in medium latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2–7
Fig. 8–27
Fig. 28–39
Fig. 40–43

Similar content being viewed by others

References

  • Ahmad R, Zaheer S, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci 85:43–50

    Article  CAS  Google Scholar 

  • Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochin Acta 61:677–682

    Article  CAS  Google Scholar 

  • Benvenuto M, Osterrieth M, Fernández Honaine M (2013) Producción de Silicofitolitos en cultivos de Soja y Trigo, en el sudeste bonaerense. In XXXIV Jornadas Argentinas de Botánica 2013 Boletín annual. Sociedad Argentina de Botánica, La Plata, p. 136

  • Bertoldi de Pomar H (1975) Los silicofitolitos: sinopsis de su conocimiento. Darwiniana 19:173–206

  • Borrelli N, Osterrieth M, Marcovecchio J (2008) Interrelations of vegetal cover, silicophytolith content and pedogenesis of Typical Argiudolls of the Pampean Plain, Argentina. Catena 75:146–153

    Article  CAS  Google Scholar 

  • Borrelli N, Alvarez MF, Osterrieth M, Marcovecchio J (2010) Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina: a preliminary study. J Soil Sediment 10:983–994

    Article  CAS  Google Scholar 

  • Burgos JJ, Vidal A (1951) Los climas de la República Argentina según la nueva clasificación de Thornthwaite. Meteoros 1:3–32

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16:1121–1129

    Article  Google Scholar 

  • Currie H, Perry C (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1983) El viaje del Beagle. Guadarrama, Barcelona

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    Article  CAS  Google Scholar 

  • Exley C (2009) Silicon in life: whither biological silicification? In: Muller WEG, Grachev MA (eds) Biosilica in evolution, morphogenesis and nano-biotechnology. Springer, Berlin, pp 173–184

    Chapter  Google Scholar 

  • FAO (2007) Future Expansion of Soybean 2005–2014: implications for food security, sustainable rural development and agricultural policies in the Countries of Mercosur and Bolivia, synthesis document. In: Regional Office for Latin America and the Caribbean (Policy Assistance Series), Santiago, p. 53

  • Farmer C, Delbos E, Miller J (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127:71–79

    Article  CAS  Google Scholar 

  • Geis JW (1978) Biogenic opal in three species of Gramineae. Ann Bot 42:1119–1129

    CAS  Google Scholar 

  • Gerard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758

    Article  CAS  Google Scholar 

  • Guntzer F, Keller C, Poulton PR, Mcgrath SP, Meunier J (2012) Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184

    Article  CAS  Google Scholar 

  • Handreck KA, Jones LHP (1968) Studies of silica in the oat plant. IV. Silica content of plant parts in relation to stage of growth, supply of silica, and transpiration. Plant Soil 29:449–459

    Article  CAS  Google Scholar 

  • Hodson MJ, Evans DE (1995) Aluminium/silicon interactions in higher plants. J Exp Bot 46:161–171

    Article  CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1989) Subcellular localization of mineral deposits in the roots of wheat (Triticum aestivum L.). Protoplasma 151:19–32

    Article  Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plant. IV. Effect of silicon on alleviation of manganese toxicity of rice plants. J Soil Sci Plant Nutr 34:65–73

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. Mc Graw-Hill, New York

    Google Scholar 

  • Jones LHP, Handreck KA (1965) Studies of silica in the oat plant, III: uptake of silica from soils by the plant. Plant Soil 23:79–96

    Article  CAS  Google Scholar 

  • Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. Adv Agron 19:107–149

    Article  CAS  Google Scholar 

  • Kealhofer L, Piperno DR (1998) Opal Phytoliths in Southeast Asian Flora. Smithsonian Contributions to Botany 88. Smithsonian Institution Press, Washington, DC

    Book  Google Scholar 

  • Keller C, Guntzer F, Barboni D, Meunier J (2012) Impact of agriculture on the Si biogeochemical cycle: input from phytolith studies. C R Geosci 344:739–746

    Article  CAS  Google Scholar 

  • Kelly E, Chadwick O, Hilinski T (1998) The effect of plants on mineral weathering. Biogeochemistry 42:21–53

    Article  Google Scholar 

  • Labouriau LG (1983) Phytolith work in Brazil: a minireview. Phytolith Newsl 2:6–10

    Google Scholar 

  • Lovering TS (1959) Significance of accumulator plants in rock weathering. Bull Geol Soc Am 70:781–800

    Article  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Sci 211:1126–1131

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Martínez DE, Osterrieth M (1999) Geoquímica de la sílice disuelta en el Acuífero Pampeano en la Vertiente Sudoriental de Tandilla. Hidrología Subterránea 13:241–250

  • Massey FP, Ennos AR, Hartley SE (2007) Herbivore specific induction of silica-based plant defences. Oecologia 152:677–683

    Article  PubMed  Google Scholar 

  • Metcalfe CR (1960) Anatomy of monocotyledons I. Gramineae. Clarendon Press, Oxford

    Google Scholar 

  • Metcalfe CR (1971) Anatomy of monocotyledons. V. Cyperaceae. Clarendon Press, Oxford

    Google Scholar 

  • Metcalfe CR (1985) Anatomy of the dicotyledons II. Wood structure and conclusion of the general introduction. Clarendon Press, Oxford

    Google Scholar 

  • Munger P, Bleiholder H, Hack H et al (1997) Phenological growth stages of the soybean plant (Glycine max (L.) MERR.): codification and description according to the general BBCH scale. J Agron Crop Sci 179:209–217

    Article  Google Scholar 

  • Osterrieth M (2004). Biominerales y Biomineralizaciones. In: Cristalografía de Suelos Resúmenes Expandidos, Sociedad Mexicana A. C. de Cristalografía, México D.F, pp 206–218

  • Osterrieth M, Zucol AF, Lopez de Armentia A (1998) Presencia de restos vegetales carbonizados en secuencias sedimentarias costeras del Holoceno Tardío de Mar Chiquita, Buenos Aires, Argentina. V Jornadas Geológicas Bonaerenses 2:251–255

  • Osterrieth M, Martínez G, Zurro D et al (2002) Procesos de formación del sitio 2 de la localidad arqueológica Amalia: evolución paleoambiental. In: Mazzanti D, Berón M, Oliva F (eds) Del mar a los salitrales: diez mil años de historia pampeana en el umbral del tercer milenio. Sociedad Argentina de Arqueología, Buenos Aires, Mar del Plata, pp 343–354

  • Osterrieth M, Madella M, Zurro D, Alvarez MF (2009) Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quat Int 193:70–79

    Article  Google Scholar 

  • Osterrieth M, Benvenuto L, Alvarez M, Fernandez Honaine M (2014). Silicophytoliths: relevant buffer in the process of weathering of Typic Argiudolls, Argentinean Pampean plains. In: 9th International Meeting for Phytolith Research: toward integrative phytolith research abstracts, International Phytolith Society, Brussels, pp 42–43

  • Parry W, Smithson F (1964) Types of opaline silica depositions in the leaves of British grasses. Ann Bot 28:169–185

    Google Scholar 

  • Pearsall DM, Trimble MK (1984) Identifying past agricultural activity through soil phytolith analysis: a case study from the Hawaiian Islands. J Archaeol Sci 11:119–133

    Article  Google Scholar 

  • Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, San Diego

    Google Scholar 

  • Runge F (1999) The opal phytolith inventory of soils in Central Africa—quantities, shapes, classification, and spectra. Rev Palaeobot Palynol 107:23–53

    Article  Google Scholar 

  • SAGYP-INTA (1989) Mapa de suelos de la Provincia de Buenos Aires, E 1:500000. Secretaría de Agricultura, Ganadería y Pesca—Instituto Nacional de Tecnología Agropecuaria, Buenos Aires

  • Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Soil Sci Soc Am J 33:109–115

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ing. MSc. José Felix Vilá, director of Microscopy Laboratory of National University of Mar del Plata, for technical assistance on the scanning electron microscope and the Gonzalez family for providing the soybean field to perform this study. We also thank the comments and suggestions of Mariana Fernández Honaine and Macarena S. Valiñas that helped to improve our manuscript. This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT-2036 and PICT-1583) and Universidad Nacional de Mar del Plata (EXA 741/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Benvenuto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvenuto, M.L., Osterrieth, M.L. Silicophytoliths from soybean plants in different growth stages of the Argentine Pampas. Braz. J. Bot 39, 337–347 (2016). https://doi.org/10.1007/s40415-015-0212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0212-4

Keywords

Navigation