Skip to main content
Log in

Influence of cadmium and salinity in the red alga Pterocladiella capillacea: cell morphology, photosynthetic performance and antioxidant systems

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

This study aimed to determine the effects of cadmium (Cd) on apical segments of Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand. For 7 days, these segments were cultivated under different salinities (25, 35 and 45 psu) and different Cd concentrations (0.17–0.70 ppm Cd). The samples were processed for light and confocal microscopy to assess photosynthetic performance, CHN levels, protein levels, as well as NADH dehydrogenase, and catalase activities. Plants cultivated at 0.70 ppm showed a reduction in the number of floridean starch grains by cytochemical analysis. Chloroplast autofluorescence decreased with cadmium exposure, while the kinetic patterns of ETR-light curves showed no significant differences among the treatments. Treatments showed variations in CNH levels, but no clear trend was observed. The content of total soluble protein and mitochondrial NADH dehydrogenase activity varied significantly, depending on the cadmium concentration and salinity levels. However, catalase activity decreased only in samples exposed to both cadmium and salinity treatments. Based on these lines of evidence, the present results showed a higher sensitivity of P. capillacea to increasing levels of cadmium exposure. When intermediate concentrations of cadmium were associated with low salinity values, its toxic effect on the model alga was intensified. Abiotic factors interfered with the physiological ability of the alga to protect itself from metal toxicity, resulting in metabolic compromise and reduction of primary productivity, i.e., photosynthesis and carbohydrate accumulation in the form of starch granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figs. 2–15
Figs. 16–27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Method Enzym 105:121–126

    Article  CAS  Google Scholar 

  • Andosch A, Affenzellera MJ, Lutz C, Lutz-Meindl U (2012) A fresh-water green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J Plant Physiol 169:1489–1500

    Article  CAS  PubMed  Google Scholar 

  • Andria JR, Vergara JJ, Llorens LP (1999) Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol 34:497–504

    Article  Google Scholar 

  • Armisén R, Galatas F (1987) Production, properties and uses of agar. In McHugh DJ (ed) Production and utilization of products from commercial seaweeds, pp 1–57. FAO fishing tech. paper

  • Arnold KE, Manley SL (1985) Carbon allocation in Macrocystis pyrifera (Phaeophyta): intrinsic variability in photosynthesis and respiration. J Phycol 21:154–167

    Article  CAS  Google Scholar 

  • Bird K, Hablg T, DeBusk T (1982) Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J Phycol 18:344–348

    Article  CAS  Google Scholar 

  • Bouzon ZL, Ferreira EC, Dos Santos R, Scherner F, Horta PA, Maraschin M, Schmidt EC (2012) Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro. Protoplasma 249:637–650

    Article  CAS  PubMed  Google Scholar 

  • Branco D, Lima A, Almeida SFP, Figueira E (2010) Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kützing) W. Smith. Aquat Toxicol 99:109–117

    Article  CAS  PubMed  Google Scholar 

  • Brinza L, Nygård CA, Dring MJ, Gavrilescu M, Benning LG (2009) Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresour Technol 100:1727–1733

    Article  CAS  PubMed  Google Scholar 

  • Chow F (2012) Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor. In Najafpour MM (org) Applied Photosynthesis, InTech, pp 105–120

  • Chow F, Oliveira MC (2008) Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): influence of different nitrogen sources. J Appl Phycol 20:325–332

    Google Scholar 

  • Collén J, Pinto E, Pedersén M, Colepicolo P (2003) Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals. Arch Environ Contam Toxicol 45:337–342

    PubMed  Google Scholar 

  • Conitz JM, Fagen R, Lindstrom SC, Plumley FG, Stekoll MS (2001) Growth and pigmentation of juvenile Porphyra torta (Rhodophyta) gametophytes in response to nitrate, salinity and inorganic carbon. J Appl Phycol 13:423–431

    Article  Google Scholar 

  • Daud MK, Ali S, Variath MT, Zhu SJ (2013) Differential physiological, ultramorphological and metabolic responses of cotton cultivars under cadmium stress. Chemosphere 93:2593–2602

    Article  CAS  PubMed  Google Scholar 

  • de Paula Martins R, Glaser V, da Luz SD, de Paula FPM, Wannmacher CM, Farina M, de Oliveira PA, Prediger RD, Latini A (2013) Platelet oxygen consumption as a peripheral blood marker of brain energetics in a mouse model of severe neurotoxicity. J Bioenerg Biomembr 45:449–457

    Article  PubMed  Google Scholar 

  • DeBoer JA, Guigli HJ, Israel TL, D’Elia CF (1978) Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J Phycol 14:261–266

    Article  CAS  Google Scholar 

  • Edwards P (1970) Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas, Texas. Contrib Mar Sci 15:1–228

  • Felix MR, Osorio LKP, Ouriques LC, Farias-Soares FL, Steiner N, Kreusch M, Pereira DT, Simioni C, Costa GB, Horta PA, Chow F, Ramlov F, Maraschin M, Bouzon ZL, Schmidt ÉC (2014) The effect of cadmium under different salinity conditions on the cellular architecture and metabolism in the red alga Pterocladiella capillacea (Rhodophyta, Gelidiales). Microsc Microanal 20:1411–1424

  • Figueroa FL, Escassi L, Pérez-Rodíguez E, Korbee N, Giles AD, Johnsen G (2003) Effects of short-term irradiation on photoinhibition and accumulation of mycosporine-like amino acids in sun and shade species of the red algal genus Porphyra. J Photochem Photobiol B Biol 69:21–30

    Article  CAS  Google Scholar 

  • García-Sánchez MJ, Fernández JA, Niel FX (1993) Biochemical and physiological responses of Gracilaria tenuistipitata under two different nitrogen treatments. Physiol Plant 88:631–637

    Article  Google Scholar 

  • Gómez I, Figueroa FL (1998) Effects of solar UV stress on chlorophyll fluorescence kinetics of intertidal macroalgae from Southern Spain: a case study in Gelidium species. J Appl Phycol 10:285–294

    Article  Google Scholar 

  • Gouveia C, Kreusch M, Schmidt EC, Felix MRL, Osorio LKP, Pereira DT, Santos R, Ouriques LC, Martins RP, Latini A, Ramlov F, Carvalho TJG, Chow F, Maraschin M, Bouzon ZL (2013) The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microsc Microanal 19:513–524

    Article  CAS  PubMed  Google Scholar 

  • Grzymski J, Johnsen G, Sakshug E (1997) The significance of intracellular self-shading on the bio-optical properties of brown, red and green macroalgae. J Phycol 33:408–414

    Article  Google Scholar 

  • Hamilton J, Thomas R, DeLucia E (2001) Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell Environ 24:975–982

    Article  CAS  Google Scholar 

  • Hanisak MD (1990) The use of Gracilaria tikvahiae (Gracilariales, Rhodophyta) as a model system to understand the nitrogen nutrition of culture seaweeds. Hydrobiologia 204:79–87

    Article  Google Scholar 

  • Hepler PK, Gunning BES (1998) Confocal fluorescence microscopy of plant cells. Protoplasma 201:121–157

    Article  Google Scholar 

  • Huan L, Xie X, Zheng Z, Sun F, Wu S, Li M, Gao S, Gu W, Wang G (2014) Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga. Plant Cell Phys. doi:10.1093/pcp/pcu063

    Google Scholar 

  • Hwang SP, Williams SL, Brinkhuis BH (1987) Changes in internal dissolved nitrogen pools as related to nitrate uptake and assimilation in Gracilaria tikvahiae McLachlan (Rhodophyta). Bot Mar 30:11–19

    Article  CAS  Google Scholar 

  • IPCC (2013) Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5. WHO and UNEP

  • Kakinuma M, Coury DA, Kuno Y, Itoh S, Kozawa Y, Inagaki E, Yoshiura Y, Amano H (2006) Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Mar Biol 149:97–106

    Article  CAS  Google Scholar 

  • Karsten U, Wiencke C, Kirst GO (1991) The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and southern Chile. J Exp Bot 42(245):1533–1539

    Article  CAS  Google Scholar 

  • Katz S, Kizner Z, Dubinsky Z, Friedlander M (2000) Responses of Porphyra linearis (Rhodophyta) to environmental factors under controlled culture conditions. J Appl Phycol 12:535–542

    Article  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138

    Article  CAS  PubMed  Google Scholar 

  • Lapointe BE (1981) The effects of light and nitrogen on growth, pigment content, and biochemical composition of Gracilaria foliifera v. angustissima (Gigartinales, Rhodophyta). J Phycol 17:90–95

    Article  CAS  Google Scholar 

  • Lapointe B, Duke CS (1984) Biochemical strategies for growth of Gracilaria tikvahiae (Rhodophyta) in relation to light intensity and nitrogen availability. J Phycol 20:488–495

    Article  CAS  Google Scholar 

  • Latini A, Rodriguez M, Borba RR, Scussiato K, Leipnitz G, de Assis RD, da Costa FG, Funchal C, Jacques-Silva MC, Buzin L, Giugliani R, Cassiana A, Radi R, Wajner M (2005) 3-Hydroxyglutaric acid moderately impairs energy metabolism in brain of young rats. Neuroscience 135:111–120

    Article  CAS  PubMed  Google Scholar 

  • Legendre L, Ackley SF, Dieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. Polar Biol 12:429–444

    Google Scholar 

  • Lerdau M, Coley PD (2002) Benefits of the carbon-nutrient balance hypothesis. Oikos 98:534–536

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Press Syndicate of the University of Cambridge, Cambridge

    Book  Google Scholar 

  • Lowry OH, Rosebough N, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Macler BA (1988) Salinity effects on photosynthesis, carbon allocation and nitrogen assimilation in the red alga, Gelidium coulteri. Plant Physiol 88:690–694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH (2003) Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotoxicol Environ Saf 55:64–69

    Article  CAS  PubMed  Google Scholar 

  • Mamboya FA, Pratap HB, Mtolera M, Bjork M (1999) The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergensenii. In: Richmond MD, Francis J (eds) Proceedings of the conference on advances on marine sciences in Tanzania, pp 185–192

  • Mock T, Gradinger R (2000) Changes in photosynthetic carbon allocation in algal assemblages of Arctic sea ice with decreasing nutrient concentrations and irradiance. Mar Ecol Prog Ser 202:1–11

    Article  CAS  Google Scholar 

  • Oliveira EC, Berchez FAS (1993) Resource biology of Pterocladia capillacea (Gelidiales, Rhodophyta) populations in Brazil. Hydrobiologia 260:255–261

    Article  Google Scholar 

  • Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations on photosynthetic apparatus of plants under cadmium stress. Botanic Stud 54:45–51

    Article  Google Scholar 

  • Perreault F, Dionne J, Didur O, Juneau P, Popovic R (2011) Effect of cadmium on photosystem II activity in Chlamydomonas reinhardtii: alteration of O-J–I–P fluorescence transients indicating the change of apparent activation energies within photosystem II. Photosynth Res 107:151–157

    Article  CAS  PubMed  Google Scholar 

  • Ramus J, Rosenberg G (1980) Diurnal photosynthetic performance of seaweeds measured under natural conditions. Mar Biol 56:21–28

    Article  CAS  Google Scholar 

  • Ritchie RJ (1988) The ionic relations of Ulva lactuca. J Plant Physiol 133:183–192

    Article  CAS  Google Scholar 

  • Rocchetta I, Leonardi PI, Amado Filho G, Molina MCR, Conforti V (2007) Ultrastructure and X-ray microanalysis of Euglena gracilis (Euglenophyta) under chromium stress. Phycologia 46:300–306

    Article  Google Scholar 

  • Ryther JG, Dustan WM (1971) Nitrogen, phosphorus and eutrophication in the coastal environment. Science 171:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Schmidt EC, Bouzon ZL (2013) Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium. Protoplasma 250:297–305

    Article  CAS  PubMed  Google Scholar 

  • Santos RW, Schmidt EC, Felix MRL, Polo LK, Kreusch M, Pereira DT, Simioni C, Chow F, Ramlov F, Maraschin M, Bouzon ZL (2014) Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features. Ecotoxicol Environ Saf 105:80–89

    Article  PubMed  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scherner F, Ventura R, Barufi J, Horta P (2012) Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: providing baselines for potential shifts on seaweed assemblages. Mar Environ Res 79:1–12

    Article  Google Scholar 

  • Schmidt EC, Scariot LA, Rover T, Bouzon ZL (2009) Changes in ultrastructure and histochemistry of two red macroalgae strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales), as a consequence of ultraviolet B radiation exposure. Micron 40:860–869

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EC, Maraschin M, Bouzon ZL (2010) Effects of UVB radiation on the carragenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales): changes in ultrastructure, growth, and photosynthetic pigments. Hydrobiologia 649:171–182

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-destructive indicator for rapid assess assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies, vol 100. Springer, Berlin, pp 49–70

    Google Scholar 

  • Sheng PX, Ting Y, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    Article  CAS  PubMed  Google Scholar 

  • Smith RE, Clement P, Cota GF, Li WK (1989) Intracellular photosynthate allocation and the control of arctic marine ice algal production. J Phycol 23:124–132

    Article  Google Scholar 

  • Talarico L (2002) Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress. Environ Pollut 120:813–821

    Article  CAS  PubMed  Google Scholar 

  • Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  CAS  PubMed  Google Scholar 

  • Toledo FAL, Costa KB, Pivel MAG (2007) Salinity changes in the western tropical South Atlantic during the last 30kyr. Global Planet Change 57:383–395

    Article  Google Scholar 

  • Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ (1988) Interactions between photosynthesis, respiration and nitrogen assimilation in microalgae. Can J Bot 66:2083–2097

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Vergara JJ, Bird KT, Niell FX (1995) Nitrogen assimilation following NH4 + pulses in the red alga Gracilariopsis lemaneiformis: effect on C metabolism. Mar Ecol Prog Ser 122:253–263

    Article  CAS  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82

    Article  Google Scholar 

  • Xia JR, Li YJ, Lu J, Chen B (2004) Effects of copper and cadmium on growth, photosynthesis, and pigment content in Gracilaria lemaneiformis. Bull Environ Contam Toxicol 73:979–986

    Article  CAS  PubMed  Google Scholar 

  • Yokoya NS, Oliveira EC (1992) Effects of salinity on the growth rate, morphology and water content of some Brazilian red algae of economic importance. Ciências Marinas México 18:49–64

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil, for the use of their confocal microscopy. Éder C. Schmidt holds a postdoctoral fellowship from CAPES. Zenilda L. Bouzon is a CNPq Fellow. Fungyi Chow thanks FAPESP for financial support. The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for the financial support of Éder C. Schmidt (process 473088/2013-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éder C. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, É.C., de L. Felix, M.R., Polo, L.K. et al. Influence of cadmium and salinity in the red alga Pterocladiella capillacea: cell morphology, photosynthetic performance and antioxidant systems. Braz. J. Bot 38, 737–749 (2015). https://doi.org/10.1007/s40415-015-0183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0183-5

Keywords

Navigation