Skip to main content

Advertisement

Log in

The effect of long-term historical habitat fragmentation on genetic diversity of the relictual conifer Calocedrus macrolepis (Cupressaceae) in China

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Geological events and glacial history have all induced habitat fragmentation, which has long been recognized as a major threat to the survival of many species. However, fragmentation has differential effects on population genetic patterns of individual species, such as loss of genetic diversity, genetic differentiation enhance, inbreeding increase, allelic deletion, and no effect. Calocedrus macrolepis Kurz is an endangered ancient relictual and fragmented conifer. In this study, the genetic diversity and structure were analyzed to shed light on the factors that determine their contemporary genetic patterns and to provide optimum strategies for future conservation. The genetic diversity within and among 14 extant populations of C. macrolepis was analyzed using nine microsatellite markers. The genetic diversity (H E = 0.636), genetic differentiation (F ST = 0.163), and gene flow (Nm = 1.496) were disclosed, respectively. No significant correlation was detected by the Mantel test between genetic and geographical distances among pair-wise comparisons of populations (r = 0.197, P = 0.103). Fourteen populations could be generally assigned to two separate groups, and significant asymmetrical migration among populations within the regional groups was revealed. Both Quaternary glaciations and neotectonic movements seem to be associated with a long history of population contraction and fragmentation of C. macrolepis, enhancing its genetic drift and population divergence. The results indicate that long-term habitat fragmentation could be responsible for the genetic structure observed. In situ conservation strategies should be designed, especially small and isolated populations. Also, special attention should be given to populations LY and DZ because of their private alleles, as well as to population CJ isolated from the mainland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acheré V, Favre JM, Besnard G, Jeandroz S (2005) Genomic organization of molecular differentiation in Norway spruce (Picea abies). Mol Ecol 14:3191–3201

    Article  PubMed  Google Scholar 

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Alistair SJ, Josep P (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. P Natl Acad Sci USA 103:8096–8100

    Article  Google Scholar 

  • Allnutt TR, Newton AC, Lara A, Premoli A, Armesto JJ, Vergara R, Gardner M (1999) Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Mol Ecol 8:975–987

    Article  CAS  PubMed  Google Scholar 

  • Averyanov LV, Hiep NT, Loc PK (2008) The Genus Calocedrus (Cupressaceae) in the Flora of Vietnam. Taiwania 53:11–22

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC, Hamrick JL (1996) Conservation genetics: case histories from nature. Chapman & Hall, New York

    Book  Google Scholar 

  • Bacles CFE, Lowe AJ, Ennos RA (2004) Genetic effects of chronic habitat fragmentation on tree species: the case of Sorbus aucuparia in a deforested Scottish landscape. Mol Ecol 13:573–584

    Article  CAS  PubMed  Google Scholar 

  • Bacles CFE, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979–990

    PubMed  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    Article  PubMed  Google Scholar 

  • Bekessy SA, Allnutt TR, Premoli AC, Lara A, Ennos RA, Burgman MA, Cortes M, Newton AC (2002) Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs. Heredity 88:243–249

    Article  CAS  PubMed  Google Scholar 

  • Boratyński A, Wachowiak W, Dering M, Boratyńska K, Sękiewicz K, Sobierajska K, Jasińska AK, Klimko M, Montserrat JM, Romo A, Ok T, Didukh Y (2014) The biogeography and genetic relationship of J. oxycedrus and related taxa from the Mediterranean and Macaronesian regions. Bot J Linn Soc 174:637–653

    Article  Google Scholar 

  • Chen CH, Huang JP, Tsai CC, Chaw SM (2009) Phylogeny of Calocedrus (Cupressaceae), an eastern Asian and western North American disjunct gymnosperm genus, inferred from nuclear ribosomal nrITS sequences. Bot Stud 50:425–433

    CAS  Google Scholar 

  • Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89:1792–1798

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull 19:11–15

    Google Scholar 

  • Ellstrand NC (1992) Gene flow by pollen: implications for plant conservation genetics. Oikos 63:77–86

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Article  Google Scholar 

  • Farjon A (2001) World checklist and bibliography of conifers. The Royal Botanic Gardens Press, Kew

    Google Scholar 

  • Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. The Royal Botanic Gardens Press, Kew

    Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fu LG (1995) China plant red data book. Science Press, Beijing

    Google Scholar 

  • Fu LG, Yu YF (1999) Cupressaceae. In: Raven PH, Wu CY (eds) Flora of China. Science Press, Missouri Botanical Garden Press, Beijing, St. Louis

    Google Scholar 

  • Galeuchet DJ, Perret C, Fischer M (2005) Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis floscuculi L., in a fragmented landscape. Mol Ecol 14:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Hong D, Wang H, Liu Z, Zhang C (1998) Population genetic structure and conservation of an endangered conifer, Cathaya argyrophylla (Pinaceae). Int J Plant Sci 159:351–357

    Article  Google Scholar 

  • GENEPOP (2013) Genepop - population genetics software. http://genepop.curtin.edu.au/

  • González-Martínez SC, Dubreuil M, Riba M, Vendramin GG, Sebastiani F, Mayol M (2010) Spatial genetic structure of Taxus baccata L. in the western Mediterranean Basin: past and present limits to gene movement over a broad geographic scale. Mol Phylogenet Evol 55:805–815

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest 6:95–124

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666–673

    Article  Google Scholar 

  • Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736

    Article  PubMed  Google Scholar 

  • Hsieh YC, Chung JD, Wang CN, Chang CT, Chen CY, Hwang SY (2013) Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity 111:147–156

    Article  PubMed Central  PubMed  Google Scholar 

  • Khasa DP, Jaramillo-Correa JP, Jaquish B, Bousquet J (2006) Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Mol Ecol 15:3907–3918

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. P Natl Acad Sci USA 75:2868–2872

    Article  CAS  Google Scholar 

  • Kracek Z (1999) An ancient Calocedrus (Cupressaceae) from the European Tertiary. Flora: Morphol Geobot, Oekophysiol 194:237–248

    Google Scholar 

  • Kwak MM, Velterop O, van Andel J (1998) Pollen and gene flow in fragmented habitats. Appl Veg Sci 1:37–54

    Article  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Ledig FT, Capó-Arteaga MA, Hodgskiss PD, Sbay H, Flores-López C, Thompson Conkle M, Bermejo-Velázquez B (2001) Genetic diversity and the mating system of a rare Mexican piñon, Pinus pinceana, and a comparison with Pinus maximartinezii (Pinaceae). Am J Bot 88:1977–1987

    Article  CAS  PubMed  Google Scholar 

  • Liao SX, Mi XJ, Liu AZ, Kun L, Yang ZY (2010) Isolation and characterization of polymorphic microsatellite markers in Calocedrus macrolepis Kurz (Cupressaceae). HortScience 45:169–171

    Google Scholar 

  • Liao SX, Cui K, Wan YM, Zhou ZS, Li ZH, Cui YZ (2014) Reproductive biology of the endangered cypress Calocedrus macrolepis. Nord J Bot 32:98–105

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Liu YS, Guo SX, Ferguson DK (1996) Catalogue of cenozoic megafossil plants in China. Palaeontogr Abt B 238:141–179

    Google Scholar 

  • Liu FY, Li K, Liao SX, Cui YZ (2010) Interspecific competition, population structure and growth dynamics of endangered Calocedrus macrolepis. Sci Silvae Sin 46:23–28

    Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Maghuly F, Pinsker W, Praznik W, Fluch S (2006) Genetic diversity in managed subpopulations of Norway spruce [Picea abies (L.) Karst.]. Forest Ecol Manag 222:266–271

    Article  Google Scholar 

  • Mariette S, Chagne D, Lezier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479

    Article  CAS  PubMed  Google Scholar 

  • Matusova R (1995) Genetic variation in five populations of silver fir (Abies alba Mill.) in Slovakia. Biologia 50:53–59

    Google Scholar 

  • Mehes M, Nkongolo KK, Michael P (2009) Assessing genetic diversity and structure of fragmented populations of eastern white pine (Pinus strobus) and western white pine (P. monticola) for conservation management. J Plant Ecol 2:143–151

    Article  Google Scholar 

  • MIGRATE-N 3.6.5 (2013) Estimation of population sizes and gene flow using the coalescent Software. Current version 3.6.5. http://popgen.sc.fsu.edu/Migrate-n.html

  • Miller MP (1997) Tools for population genetic analysis (TFPGA), version 1.3: a windows program for the analysis of allozyme and molecular population genetics data. http://www.markgeneticsoftware.net/

  • Milligan BG, Leebens-Mack J, Strand AE (1994) Conservation genetics: beyond the maintenance of marker diversity. Mol Ecol 3:423–435

    Article  Google Scholar 

  • Mona S, Ray N, Arenas M, Excoffier L (2014) Genetic consequences of habitat fragmentation during a range expansion. Heredity 112:291–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 512:354–362

    Article  Google Scholar 

  • Newman D, Tallmon DA (2001) Experimental evidence for beneficial fitness effects of gene flow in recently isolated populations. Conserv Biol 15:1054–1063

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Oostermeijer J, Van’t Veer R, Den Nijs J (1994) Population structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. J Appl Ecol 31:428–438

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • Premoli AC, Kitzberger T, Veblen TT (2000) Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. J Biogeogr 27:251–260

    Article  Google Scholar 

  • Premoli AC, Souto CP, Allnut TR, Newton AC (2001) Effects of population disjunction on isozyme variation in the widespread Pilgerodendron uviferum. Heredity 87:337–343

    Article  CAS  PubMed  Google Scholar 

  • Premoli AC, Souto CP, Rovere AE, Allnut TR, Newton AC (2002) Patterns of isozyme variation as indicators of biogeographic history in Pilgerodendron uviferum (D. Don) Florín. Divers Distrib 8:57–66

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quiroga MP, Premoli AC (2010) Genetic structure of Podocarpus nubigena (Podocarpaceae) provides evidence of Quaternary and ancient historical events. Palaeogeogr Palaeoclimatol 285:186–193

    Article  Google Scholar 

  • Rallo P, Dorado G, Martín A (2000) Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989

    Article  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rohlf FJ (1997) NTSYS-pc: numerical taxonomy and multivariate analysis system. Version 2.11c. Exeter Software, Setauket

    Google Scholar 

  • Rumball W, Franklin IR, Franklin R, Sheldon BL (1994) Decline in heterozygosity under full-sib and double first-cousin inbreeding in Drosophia melanogaster. Genetics 136:1039–1049

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rumeu B, Vargas P, Jaén-molina R, Nogales M, Caujapé-castells J (2014) Phylogeography and genetic structure of the threatened Canarian Juniperus cedrus (cupressaceae). Bot J Linn Soc 175:376–394

    Article  Google Scholar 

  • Savolainen O, Pyhäjärvi T (2007) Genomic diversity in forest trees. Curr Opin Plant Biol 10:162–167

    Article  CAS  PubMed  Google Scholar 

  • Schaal B, Hayworth D, Olsen K, Rauscher J, Smith W (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Sefc K, Lopes M, Mendonça D, Santos MRD, Machado L, Machado ADC (2000) Identification of microsatellite loci in olive(Olea europaea) and their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1173

    Article  CAS  PubMed  Google Scholar 

  • Sork VL, Nason J, Campbell DR, Fernandez JF (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol 14:219–223

    Article  PubMed  Google Scholar 

  • Tang S, Dai W, Li M, Zhang Y, Geng Y, Wang L, Zhong Y (2008) Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica 133:21–30

    Article  CAS  PubMed  Google Scholar 

  • Tomimatsu H, Ohara M (2003) Genetic diversity and local population structure of fragmented populations of Trillium camschatcense (Trilliaceae). Biol Conserv 109:249–258

    Article  Google Scholar 

  • Torres-Díaz C, Ruiz E, González F, Fuentes G, Cavieres LA (2007) Genetic diversity in Nothofagus alessandrii (Fagaceae), an endangered endemic tree species of the Coastal Maulino Forest of Central Chile. Ann Bot 100:75–82

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Geert A, Van Rossum F, Triest L (2008) Genetic diversity in adult and seedling populations of Primula vulgaris in a fragmented agricultural landscape. Conserv Genet 9:845–853

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wang X, Zou Y, Zhang D, Hong D (1996) RAPD analysis of genetic diversity of Cathaya argyrophylla. Sci China (Serial C) 26:54–59

    Google Scholar 

  • Wang DL, Li ZC, Hao G, Chiang TY, Ge XJ (2004) Genetic diversity of Calocedrus macrolepis (Cupressaceae) in southwestern China. Biochem Syst Ecol 32:797–807

    Article  CAS  Google Scholar 

  • WCMC (1997) The Socialist Republic of Vietnam Appendix 5-threatened plant species. http://www.wcmc.org.uk/infoserv/countryp/vietnam/app5.html

  • WGCPC (The Writing Group of Cenozoic Plants of China) (1978) Cenozoic plants from China. In: WGCPC (ed) Fossil plants of China. Science Press, Beijing, p 15

    Google Scholar 

  • Yao X, Ye Q, Kang M, Huang H (2007) Microsatellites analysis reveals interpopulation differentiation and gene flow in endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytol 176:472–480

    Article  PubMed  Google Scholar 

  • Yeh FC, Yang RC, Boyle T, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Priscilla Anne Licht for his help in language editing of the manuscript, and Hongtao Li, Longqian Xiao and Rong Huang for their assistance and advice.

Conflict of interest

None declared.

Funding

This work was supported by the Forestry Science and Technology Extension Project (Grant Number 2015[35]), the Forest Commonweal Foundation of Chinese State Forestry Administration (Grant Number 200704029) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Number KSCX2-YW-G-035-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Additional information

Shengxi Liao and Kai Cui have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, S., Cui, K., Tian, B. et al. The effect of long-term historical habitat fragmentation on genetic diversity of the relictual conifer Calocedrus macrolepis (Cupressaceae) in China. Braz. J. Bot 38, 567–577 (2015). https://doi.org/10.1007/s40415-015-0168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0168-4

Keywords

Navigation