Skip to main content

Advertisement

Log in

PET/MRI and brain tumors: focus on radiation oncology treatment planning

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

In brain tumors, imaging by magnetic resonance imaging (MRI) can very accurately visualize anatomy and morphology of healthy and malignant tissue, but neither contrast-enhancing areas in T1-weighted sequences, nor hyperintensities in T2/FLAIR sequences are specific for tumor tissue, especially when considering the manifold alterations resulting from previous treatment. Imaging the biology of tumor tissue by positron emission tomography (PET), therefore, is a highly interesting approach to improve the detection of macroscopic tumor which is the prerequisite for high-precision radiotherapy treatment planning. This review will focus on the benefits of amino acid tracers (l-[methyl-11C]methionine (MET) and O-(2-[18F]fluoroethyl)-l-tyrosine (FET)) in neurooncology and their implementation in radiation oncology. Furthermore, a brief overview of the current impact of 2-deoxy-2-(18F)fluoro-d-glucose (FDG), nucleic acid analogs, hypoxia tracers, and Somatostatin receptor (SSTR) analogs on radiotherapy planning in brain tumors is provided. Among advances in multiparametric MRI, Diffusion-weighted imaging (DWI) has attracted particular attention since it can predict prognosis, as well as indicate response to treatment and has already been introduced into target volume definition for radiotherapy of various cancers (e.g., prostate and rectal cancer). Additionally, advances in MR spectroscopy (MRS) are mentioned. Finally, these findings will be discussed concerning their influence on current aspects of integrated PET/MR hybrid imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weber WA, Grosu AL, Czernin J (2008) Technology Insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol 5(3):160–170. doi:10.1038/ncponc1041

    Article  CAS  PubMed  Google Scholar 

  2. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ (2010) Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972. doi:10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  3. Brandsma D, Stalpers L, Taal W, Aminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461. doi:10.1016/S1470-2045(08)70125-6

    Article  PubMed  Google Scholar 

  4. Grosu AL, Molls M, Zimmermann FB, Geinitz H, Nüsslin F, Schwaiger M, Nieder C (2006) High-precision radiation therapy with integrated biological imaging and tumor monitoring: evolution of the Munich concept and future research options. Strahlenther Onkol 182:361–368

    Article  PubMed  Google Scholar 

  5. Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, Zimmermann FB, Schwaiger M, Molls M (2005) Positron emission tomography for radiation treatment planning. Strahlenther Onkol 181:483–499

    Article  PubMed  Google Scholar 

  6. Grosu AL, Weber WA (2010) PET for radiation treatment planning of brain tumours. Radiother Oncol 96:325–327. doi:10.1016/j.radonc.2010.08.001

    Article  PubMed  Google Scholar 

  7. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    Article  PubMed  Google Scholar 

  8. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    CAS  PubMed  Google Scholar 

  9. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, Lewellen B, Pham P, Minoshima S, Swanson K, Krohn KA (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653–1659

    PubMed  Google Scholar 

  10. Prieto E, Martí-Climent JM, Domínguez-Prado I, Garrastachu P, Díez-Valle R, Tejada S, Aristu JJ, Peñuelas I, Arbizu J (2011) Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 52:865–872. doi:10.2967/jnumed.110.085324

    Article  PubMed  Google Scholar 

  11. la Fougère C, Suchorska B, Bartenstein P, Kreth FW, Tonn JC (2011) Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 13:806–819. doi:10.1093/neuonc/nor054

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hübner KF, Purvis JT, Mahaley SM Jr, Robertson JT, Rogers S, Gibbs WD, King P, Partain CL (1982) Brain tumor imaging by positron emission computed tomography using 11C-labeled amino acids. J Comput Assist Tomogr 6:544–550

    Article  PubMed  Google Scholar 

  13. Bergström M, Collins VP, Ehrin E, Ericson K, Eriksson L, Greitz T, Halldin C, von Holst H, Långström B, Lilja A, Lundqvist H, Nagren K (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7:1062–1066

    Article  PubMed  Google Scholar 

  14. Mosskin M, Ericson K, Hindmarsh T, von Holst H, Collins VP, Bergström M, Eriksson L, Johnström P (1989) Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 30:225–232

    Article  CAS  PubMed  Google Scholar 

  15. Kaim AH, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalk J, von Schulthess GK, Buck A (2002) 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med 29:648–654. doi:10.1007/s00259-002-0780-y

    Article  CAS  Google Scholar 

  16. Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med 53(2):207–214. doi:10.2967/jnumed.111.096859

    Article  CAS  PubMed  Google Scholar 

  17. Galldiks N, Langen KJ, Holy R, Pinkawa M, Stoffels G, Nolte KW, Kaiser HJ, Filss CP, Fink GR, Coenen HH, Eble MJ, Piroth MD (2012) Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-l-tyrosine PET in comparison to MRI. J Nucl Med 53:1048–1057. doi:10.2967/jnumed.111.098590

    Article  CAS  PubMed  Google Scholar 

  18. Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, Reifenberger G, Kebir S, Dorn F, Blau T, Herrlinger U, Hau P, Ruge MI, Kocher M, Goldbrunner R, Fink GR, Drzezga A, Schmidt M, Langen KJ (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695. doi:10.1007/s00259-014-2959-4

    Article  CAS  PubMed  Google Scholar 

  19. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med 40:205–212

    CAS  PubMed  Google Scholar 

  20. Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R (1999) Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-l-tyrosine in vitro and in vivo. J Nucl Med 40:1367–1373

    CAS  PubMed  Google Scholar 

  21. Heiss WD (2014) Clinical Impact of Amino Acid PET in Gliomas. J Nucl Med 55:1219–1220. doi:10.2967/jnumed.114.142661

    Article  PubMed  Google Scholar 

  22. Stöber B, Tanase U, Herz M, Seidl C, Schwaiger M, Senekowitsch-Schmidtke R (2006) Differentiation of tumour and inflammation: characterization of [methyl-3H]methionine (MET) and O-(2-[18F] fluoroethyl)-l-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 33:932–939. doi:10.1007/s00259-005-0047-5

    Article  PubMed  Google Scholar 

  23. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stöcklin G, Schwaiger M (2000) O-(2-[18F]fluoroethyl)-l-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27:542–549

    Article  CAS  PubMed  Google Scholar 

  24. Grosu AL, Astner ST, Riedel E, Nieder C, Wiedenmann N, Heinemann F, Schwaiger M, Molls M, Wester HJ, Weber WA (2011) An interindividual comparison of O-(2-[18F]fluoroethyl)-l-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 81:1049–1058. doi:10.1016/j.ijrobp.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  25. Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, Gumprecht H, Jaeger R, Schwaiger M, Molls M (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74

    Article  CAS  PubMed  Google Scholar 

  26. Grosu AL, Weber WA, Franz M, Stärk S, Piert M, Thamm R, Gumprecht H, Schwaiger M, Molls M, Nieder C (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63:511–519

    Article  CAS  PubMed  Google Scholar 

  27. Piroth MD, Pinkawa M, Holy R et al (2012) Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlenther Onkol 188:334–339. doi:10.1007/s00066-011-0060-5

    Article  CAS  PubMed  Google Scholar 

  28. Miwa K, Matsuo M, Ogawa S, Shinoda J, Yokoyama K, Yamada J, Yano H, Iwama T (2014) Re-irradiation of recurrent glioblastoma multiforme using 11Cmethionine PET/CT/MRI image fusion for hypofractionated stereotactic radiotherapy by intensity modulated radiation therapy. Radiat Oncol 9:181. doi:10.1186/1748-717X-9-181

    Article  PubMed  PubMed Central  Google Scholar 

  29. Munck af Rosenschold P, Costa J, Engelholm SA, Lundemann MJ, Law I, Ohlhues L, Engelholm S (2015) Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro-Oncology 17:757–763. doi:10.1093/neuonc/nou316

  30. Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, Ricardi U, Short SC, Weber DC, Belka C (2016) ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 118:35–42. doi:10.1016/j.radonc.2015.12.003

    Article  PubMed  Google Scholar 

  31. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  CAS  PubMed  Google Scholar 

  32. Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, Neumaier B, Heiss WD, Wienhard K, Jacobs AH (2008) Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14:2049–2055. doi:10.1158/1078-0432.CCR-07-1553

    Article  CAS  PubMed  Google Scholar 

  33. Ferdová E, Ferda J, Baxa J, Tupý R, Mraček J, Topolčan O, Hes O (2015) Assessment of grading in newly-diagnosed glioma using 18F-fluorothymidine PET/CT. Anticancer Res 35:955–959

    PubMed  Google Scholar 

  34. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, Mischel P, Czernin J, Phelps ME, Silverman DH (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    CAS  PubMed  Google Scholar 

  35. Hoeben BA, Bussink J, Troost EG, Oyen WJ, Kaanders JH (2013) Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer. Acta Oncol 52:1257–1271. doi:10.3109/0284186X.2013.812799

    Article  CAS  PubMed  Google Scholar 

  36. Cher LM, Murone C, Lawrentschuk N, Cher LM, Murone C, Lawrentschuk N, Ramdave S, Papenfuss A, Hannah A, O’Keefe GJ, Sachinidis JI, Berlangieri SU, Fabinyi G, Scott AM et al (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47:410–418

    CAS  PubMed  Google Scholar 

  37. Brown JM (2001) Therapeutic targets in radiotherapy. Int J Radiat Oncol Biol Phys 49:319–326

    Article  CAS  PubMed  Google Scholar 

  38. Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33:2133–2137

    CAS  PubMed  Google Scholar 

  39. Götz I, Grosu AL (2013) [18F]FET-PET imaging for treatment and response monitoring of radiation therapy in malignant glioma patients—a review. Frontiers Oncol 3:104. doi:10.3389/fonc.2013.00104

    Article  Google Scholar 

  40. Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM (2015) Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 6:149–170. doi:10.2147/CMAR.S54726

    Google Scholar 

  41. Zschaeck S, Haase R, Abolmaali N, Perrin R, Stützer K, Appold S, Steinbach J, Kotzerke J, Zips D, Richter C, Gudziol V, Krause M, Zöphel K, Baumann M (2015) Spatial distribution of FMISO in head and neck squamous cell carcinomas during radio-chemotherapy and its correlation to pattern of failure. Acta Oncol 54:1355–1363. doi:10.3109/0284186X.2015.1074720

    Article  CAS  PubMed  Google Scholar 

  42. Wiedenmann NE, Bucher S, Hentschel M, Mix M, Vach W, Bittner MI, Nestle U, Pfeiffer J, Weber WA, Grosu AL (2015) Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother Oncol 117:113–117. doi:10.1016/j.radonc.2015.09.015

    Article  PubMed  Google Scholar 

  43. Milker-Zabel S, Zabel-du Bois A, Henze M, Huber P, Schulz-Ertner D, Hoess A, Haberkorn U, Debus J (2006) Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 65:222–227

    Article  PubMed  Google Scholar 

  44. Astner ST, Bundschuh RA, Beer AJ, Ziegler SI, Krause BJ, Schwaiger M, Molls M, Grosu AL, Essler M (2009) Assessment of tumor volumes in skull base glomus tumors using Gluc-Lys[(18)F]-TOCA positron emission tomography. Int J Radiat Oncol Biol Phys 73(4):1135–1140. doi:10.1016/j.ijrobp.2008.05.037

    Article  PubMed  Google Scholar 

  45. Tsien C, Cao Y, Chenevert T (2014) Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 24:218–226. doi:10.1016/j.semradonc.2014.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  46. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  47. Szafer A, Zhong J, Gore JC (1995) Theoretical model for water diffusion in tissues. Magn Reson Med 33:697–712

    Article  CAS  PubMed  Google Scholar 

  48. Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2036

    Article  CAS  PubMed  Google Scholar 

  49. Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, Dong Q, Tsien C, Mukherji S, Quint DJ, Gebarski SS, Robertson PL, Junck LR, Rehemtulla A, Ross BD (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 102:5524–5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zulfiqar M, Yousem DM, Lai H (2013) ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor? a meta-analysis. AJR Am J Roentgenol 200:624–629. doi:10.2214/AJR.12.8679

    Article  PubMed  Google Scholar 

  51. Liney GP, Holloway L, Al Harthi TM, Sidhom M, Moses D, Juresic E, Rai R, Manton DJ (2015) Quantitative evaluation of diffusion-weighted imaging techniques for the purposes of radiotherapy planning in the prostate. Br J Radiol 88:20150034. doi:10.1259/bjr.20150034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iannelli G, Caivano R, Rago L, Simeon V, Lotumolo A, Rabasco P, Villonio A, Gioioso M, Mastrangelo P, Barchetti F, Panebianco V, Macarini L, Guglielmi G, Cammarota A (2016) Diffusion-weighted magnetic resonance imaging in patients with prostate cancer treated with radiotherapy. Tumori 102:71–76. doi:10.5301/tj.5000415

    Article  PubMed  Google Scholar 

  53. Burbach JP, Kleijnen JJ, Reerink O, Seravalli E, Philippens ME, Schakel T, van Asselen B, Raaymakers BW, van Vulpen M, Intven M (2015) Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer. Radiother Oncol pii S0167–8140(15):00614–30000. doi:10.1016/j.radonc.2015.10.030

    Google Scholar 

  54. Pauleit D, Langen KJ, Floeth F, Hautzel H, Riemenschneider MJ, Reifenberger G, Shah NJ, Müller HW (2004) Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas? J Magn Reson Imaging 20:758–764

    Article  PubMed  Google Scholar 

  55. Pramanik PP, Parmar HA, Mammoser AG, Junck LR, Kim MM, Tsien CI, Lawrence TS, Cao Y (2015) Hypercellularity Components of Glioblastoma Identified by High b-Value Diffusion Weighted Imaging. Int J Radiat Oncol Biol Phys 92:811–819. doi:10.1016/j.ijrobp.2015.02.058

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang J, Zhuang DX, Yao CJ, Lin CP, Wang TL, Qin ZY, Wu JS (2016) Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection. J Neurosurg 124:1585–1593. doi:10.3171/2015.6.JNS142651

    Article  PubMed  Google Scholar 

  57. Ken S, Vieillevigne L, Franceries X, Simon L, Supper C, Lotterie JA, Filleron T, Lubrano V, Berry I, Cassol E, Delannes M, Celsis P, Cohen-Jonathan EM, Laprie A (2013) Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost. Radiat Oncol 8:1. doi:10.1186/1748-717X-8-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Di Costanzo A, Scarabino T, Trojsi F, Popolizio T, Bonavita S, de Cristofaro M, Conforti R, Cristofano A, Colonnese C, Salvolini U, Tedeschi G (2014) Recurrent glioblastoma multiforme versus radiation injury: a multiparametric 3-T MR approach. Radiol Med 119:616–624. doi:10.1007/s11547-013-0371-y

    Article  PubMed  Google Scholar 

  59. Sacconi B, Raad RA, Lee J, Fine H, Kondziolka D, Golfinos JG, Babb JS, Jain R (2016) Concurrent functional and metabolic assessment of brain tumors using hybrid PET/MR imaging. J Neurooncol 127:287–293. doi:10.1007/s11060-015-2032-6

    Article  CAS  PubMed  Google Scholar 

  60. Grosu AL, Lachner R, Wiedenmann N, Stärk S, Thamm R, Kneschaurek P, Schwaiger M, Molls M, Weber WA (2003) Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys 56:1450–1463

    Article  PubMed  Google Scholar 

  61. Herzog H (2012) PET/MRI: challenges, solutions and perspectives. Z Med Phys 22:281–298. doi:10.1016/j.zemedi.2012.07.003

    Article  PubMed  Google Scholar 

  62. von Schulthess GK, Kuhn FP, Kaufmann P, Veit-Haibach P (2013) Clinical Positron Emission Tomography/Magnetic Resonance Imaging Applications. Semin Nucl Med 43:3–10

    Article  Google Scholar 

  63. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526. doi:10.2967/jnumed.108.054726

    Article  PubMed  Google Scholar 

  64. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Schölkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399. doi:10.2967/jnumed.110.078949

    Article  PubMed  Google Scholar 

  65. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, Pfannenberg C, Pichler BJ, Reimold M, Stegger L (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51:1198–1205. doi:10.2967/jnumed.110.074773

    Article  PubMed  Google Scholar 

  66. Afshar-Oromieh A, Wolf MB, Kratochwil C, Giesel FL, Combs SE, Dimitrakopoulou-Strauss A, Gnirs R, Roethke MC, Schlemmer HP, Haberkorn U (2015) Comparison of 68Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: initial results. Neuro Oncol 17:312–319. doi:10.1093/neuonc/nou131

    Article  CAS  PubMed  Google Scholar 

  67. Thorwarth D, Henke G, Müller AC, Reimold M, Beyer T, Boss A, Kolb A, Pichler B, Pfannenberg C (2011) Simultaneous 68Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: first experience. Int J Radiat Oncol Biol Phys 81:277–283. doi:10.1016/j.ijrobp.2010.10.078

    Article  PubMed  Google Scholar 

  68. Navarria P, Reggiori G, Pessina F, Ascolese AM, Tomatis S, Mancosu P, Lobefalo F, Clerici E, Lopci E, Bizzi A, Grimaldi M, Chiti A, Simonelli M, Santoro A, Bello L, Scorsetti M (2014) Investigation on the role of integrated PET/MRI for target volume definition and radiotherapy planning in patients with high grade glioma. Radiother Oncol 112:425–429. doi:10.1016/j.radonc.2014.09.004

    Article  PubMed  Google Scholar 

  69. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

  70. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L (2014) Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722. doi:10.1056/NEJMoa1308345

    Article  CAS  PubMed  Google Scholar 

  71. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708. doi:10.1056/NEJMoa1308573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hutterer M, Hattingen E, Palm C, Proescholdt MA, Hau P (2015) Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients. Neuro Oncol 17:784–800. doi:10.1093/neuonc/nou322

    Article  CAS  PubMed  Google Scholar 

  73. Galldiks N, Rapp M, Stoffels G, Fink GR, Shah NJ, Coenen HH, Sabel M, Langen KJ (2013) Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging 40:22–33. doi:10.1007/s00259-012-2251-4

    Article  CAS  PubMed  Google Scholar 

  74. Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, Muigg A, Virgolini IJ, Staffen W, Trinka E, Gotwald T, Jacobs AH, Stockhammer G (2011) O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 52(6):856–864. doi:10.2967/jnumed.110.086645

    Article  CAS  PubMed  Google Scholar 

  75. Nestle U, Weber W, Hentschel M, Grosu AL (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54:R1–R25. doi:10.1088/0031-9155/54/1/R01

    Article  PubMed  Google Scholar 

  76. Thorwarth D (2015) Functional imaging for radiotherapy treatment planning: current status and future directions-a review. Br J Radiol 88:20150056. doi:10.1259/bjr.20150056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang RY, Rahman R, Ballman KV, Felten SJ, Anderson SK, Ellingson BM, Nayak L, Lee EQ, Abrey LE, Galanis E, Reardon DA, Pope WB, Cloughesy TF (2016) Wen PY (2016) The Impact of T2/FLAIR Evaluation per RANO Criteria on Response Assessment of Recurrent Glioblastoma Patients Treated with Bevacizumab. Clin Cancer Res 22(3):575–581. doi:10.1158/1078-0432.CCR-14-3040

    Article  CAS  PubMed  Google Scholar 

  78. Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, Ellingson BM, Hashimoto N, Pollack IF, Brandes AA, Franceschi E, Herold-Mende C, Nayak L, Panigrahy A, Pope WB, Prins R, Sampson JH, Wen PY, Reardon DA (2015) Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol 16:e534–e542. doi:10.1016/S1470-2045(15)00088-1

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jadvar H, Colletti PM (2014) Competitive advantage of PET/MRI. Eur J Radiol 83:84–94. doi:10.1016/j.ejrad.2013.05.028

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Cancer Consortium (DKTK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca-Ligia Grosu.

Ethics declarations

Authors’ contribution

O. Oehlke: Content planning, Literature Search and Review, Manuscript Writing. A.-L. Grosu: Content planning, Literature Search and Review, Manuscript Writing.

Conflict of interest

Oliver Oehlke and Anca-Ligia Grosu declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required. This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oehlke, O., Grosu, AL. PET/MRI and brain tumors: focus on radiation oncology treatment planning. Clin Transl Imaging 5, 159–167 (2017). https://doi.org/10.1007/s40336-016-0206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-016-0206-7

Keywords

Navigation