Skip to main content

Advertisement

Log in

PET/MRI in breast cancer

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

This review aims to evaluate the respective values of MRI and FDG PET and their combination as a single imaging device in detection, staging, treatment selection, response evaluation, recurrence detection and restaging in breast cancer patients. A comprehensive literature search in the PubMed/MEDLINE, Embase and Scopus databases was performed including articles up to February 2016, resulting in the selection of 57 articles. The combination of PET and MRI in a single imaging device could provide synergistic diagnostic value and logistical benefit for patients. However, currently there are insufficient data to identify situations where PET/MRI would provide sufficient clinical benefit to justify its application. In addition, current generation equipment is hampered by technical challenges. Adequate acquisitions of PET and MRI require the current issues with prone position imaging and signal quantification in PET/MRI to be resolved. It is advised to perform integrated PET/MRI for primary breast tumours within the scope of clinical trials. It is expected that the technical issues of PET/MRI will be resolved, and that this promising imaging combined modality will have a significant benefit for patients with breast cancer, at least for selected subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Breast cancer screening (PDQ®), health professional version PDQ, screening and prevention editorial board. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0032846. Accessed Nov 2015

  2. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias AD, Farrar WB, Forero A, Giordano SH, Goetz M, Goldstein LJ, Hudis CA, Isakoff SJ, Marcom PK, Mayer IA, McCormick B, Moran M, Patel SA, Pierce LJ, Reed EC, Salerno KE, Schwartzberg LS, Smith KL, Smith ML, Soliman H, Somlo G, Telli M, Ward JH, Shead DA, Kumar R (2015) Breast cancer version 2.2015. J Natl Compr Canc Netw 13(4):448–475

    CAS  PubMed  Google Scholar 

  3. Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH (2008) Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246(1):116–124

    Article  PubMed  Google Scholar 

  4. Vercher-Conejero JL, Pelegrí-Martinez L, Lopez-Aznar D, Cózar-Santiago MDP (2015) Positron emission tomography in breast cancer. Diagnostics 5(1):61–83

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosen EL, Eubank WB, Mankoff DA (2007) FDG PET, PET/CT, and breast cancer imaging. Radiographics 27(Suppl 1):S215–S229

    Article  PubMed  Google Scholar 

  6. Lovrics PJ, Chen V, Coates G, Cornacchi SD, Goldsmith CH, Law C, Levine MN, Sanders K, Tandan VR (2004) A prospective evaluation of positron emission tomography scanning, sentinel lymph node biopsy, and standard axillary dissection for axillary staging in patients with early stage breast cancer. Ann Surg Oncol 11(9):846–853

    Article  PubMed  Google Scholar 

  7. Riegger C, Koeninger A, Hartung V, Otterbach F, Kimmig R, Forsting M, Bockisch A, Antoch G, Heusner TA (2012) Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the detection of lymph node metastases in breast cancer patients. Acta Radiol 53(10):1092–1098

    Article  PubMed  Google Scholar 

  8. Bellon JR, Livingston RB, Eubank WB, Gralow JR, Ellis GK, Dunnwald LK, Mankoff DA (2004) Evaluation of the internal mammary lymph nodes by FDG-PET in locally advanced breast cancer (LABC). Am J Clin Oncol 27(4):407–410

    Article  PubMed  Google Scholar 

  9. Groheux D, Giacchetti S, Delord M, Hindié E, Vercellino L, Cuvier C, Toubert ME, Merlet P, Hennequin C, Espié M (2013) 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med 54(1):5–11

    Article  PubMed  Google Scholar 

  10. Riegger C, Herrmann J, Nagarajah J, Hecktor J, Kuemmel S, Otterbach F, Hahn S, Bockisch A, Lauenstein T, Antoch G, Heusner TA (2012) Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients. Eur J Nucl Med Mol Imaging 39(5):852–863

    Article  CAS  PubMed  Google Scholar 

  11. Gunalp B, Ince S, Karacalioglu AO, Ayan A, Emer O, Alagoz E (2012) Clinical impact of (18)F-FDG PET/CT on initial staging and therapy planning for breast cancer. Exp Ther Med 4(4):693–698

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lievens Y, Van den Bogaert W (2002) Internal mammary and medial supraclavicular lymph node irradiation: the thin line between advantages and side effects. Radiother Oncol 65(2):75–77

    Article  PubMed  Google Scholar 

  13. Struikmans H, Scheijmans LJ, van Dalen A, Harmelink M, Westers P, van Isselt JW (2002) Lateralisation and depth of the internal mammary chain determined by scintigraphy and by ultrasonography: a comparative study in 124 primary breast cancer patients. Radiother Oncol 62(2):159–162

    Article  CAS  PubMed  Google Scholar 

  14. Saarnak AE, Hurkmans CW, Pieters BR, Valdés Olmos RA, Schultze Kool LJ, Hart AA, Muller SH (2002) Accuracy of internal mammary lymph node localization using lymphoscintigraphy, sonography and CT. Radiother Oncol 65(2):79–88

    Article  PubMed  Google Scholar 

  15. Poortmans P, Kouloulias V, van Tienhoven G, Collette L, Struikmans H, Venselaar JL, Van den Bogaert W, Davis JB, Lambin P, EORTC Radiation Oncology and Breast Cancer Groups (2006) Quality assurance in the EORTC randomized trial 22922/10925 investigating the role of irradiation of the internal mammary and medial supraclavicular lymph node chain works. Strahlenther Onkol 182(10):576–582

    Article  PubMed  Google Scholar 

  16. Hennequin C, Bossard N, Servagi-Vernat S, Maingon P, Dubois JB, Datchary J, Carrie C, Roullet B, Suchaud JP, Teissier E, Lucardi A, Gerard JP, Belot A, Iwaz J, Ecochard R, Romestaing P (2013) Ten-year survival results of a randomized trial of irradiation of internal mammary nodes after mastectomy. Int J Radiat Oncol Biol Phys 86(5):860–866. doi:10.1016/j.ijrobp.2013.03.021 (Erratum in: Int J Radiat Oncol Biol Phys. 2014;89(5):1145)

    Article  PubMed  Google Scholar 

  17. Poortmans PM, Collette S, Kirkove C, Van Limbergen E, Budach V, Struikmans H, Collette L, Fourquet A, Maingon P, Valli M, De Winter K, Marnitz S, Barillot I, Scandolaro L, Vonk E, Rodenhuis C, Marsiglia H, Weidner N, van Tienhoven G, Glanzmann C, Kuten A, Arriagada R, Bartelink H, Van den Bogaert W, EORTC Radiation Oncology and Breast Cancer Groups (2015) Internal mammary and medial supraclavicular irradiation in breast cancer. N Engl J Med 373(4):317–327

    Article  CAS  PubMed  Google Scholar 

  18. Aukema TS, Straver ME, Peeters MJ, Russell NS, Gilhuijs KG, Vogel WV, Rutgers EJ, Olmos RA (2010) Detection of extra-axillary lymph node involvement with FDG PET/CT in patients with stage II–III breast cancer. Eur J Cancer 46(18):3205–3210

    Article  PubMed  Google Scholar 

  19. Koolen BB, Valdés Olmos RA, Elkhuizen PH, Vogel WV, Vrancken Peeters MJ, Rodenhuis S, Rutgers EJ (2012) Locoregional lymph node involvement on 18F-FDG PET/CT in breast cancer patients scheduled for neoadjuvant chemotherapy. Breast Cancer Res Treat 135(1):231–240

    Article  PubMed  Google Scholar 

  20. Koolen BB, Vrancken Peeters MJ, Aukema TS, Vogel WV, Oldenburg HS, van der Hage JA, Hoefnagel CA, Stokkel MP, Loo CE, Rodenhuis S, Rutgers EJ, Valdés Olmos RA (2012) 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: comparison with conventional imaging techniques. Breast Cancer Res Treat 131(1):117–126

    Article  PubMed  Google Scholar 

  21. Dirisamer A, Halpern BS, Flöry D, Wolf F, Beheshti M, Mayerhoefer ME, Langsteger W (2010) Integrated contrast-enhanced diagnostic whole-body PET/CT as a first-line restaging modality in patients with suspected metastatic recurrence of breast cancer. Eur J Radiol 73(2):294–299

    Article  PubMed  Google Scholar 

  22. Heusner TA, Kuemmel S, Umutlu L, Koeninger A, Freudenberg LS, Hauth EA, Kimmig KR, Forsting M, Bockisch A, Antoch G (2008) Breast cancer staging in a single session: whole-body PET/CT mammography. J Nucl Med 49(8):1215–1222

    Article  PubMed  Google Scholar 

  23. Nursal GN, Nursal TZ, Aytac HO, Hasbay B, Torun N, Reyhan M, Yapar AF (2016) Is PET/CT Necessary in the Management of Early Breast Cancer? Clin Nucl Med 41(5):362–365

    Article  PubMed  Google Scholar 

  24. Krammer J, Schnitzer A, Kaiser CG, Buesing KA, Sperk E, Brade J, Wasgindt S, Suetterlin M, Schoenberg SO, Sutton EJ, Wasser K (2015) (18) F-FDG PET/CT for initial staging in breast cancer patients—is there a relevant impact on treatment planning compared to conventional staging modalities? Eur Radiol 25(8):2460–2469

    Article  CAS  PubMed  Google Scholar 

  25. Weir L, Worsley D, Bernstein V (2005) The value of FDG positron emission tomography in the management of patients with breast cancer. Breast J 11(3):204–209

    Article  PubMed  Google Scholar 

  26. Eubank WB, Mankoff DA (2005) Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med 35(2):84–99

    Article  PubMed  Google Scholar 

  27. Lind P, Igerc I, Beyer T, Reinprecht P, Hausegger K (2004) Advantages and limitations of FDG PET in the follow-up of breast cancer. Eur J Nucl Med Mol Imaging 31(Suppl 1):S125–S134

    PubMed  Google Scholar 

  28. Czernin J (2002) FDG-PET in breast cancer: a different view of its clinical usefulness. Mol Imaging Biol 4(1):35–45

    Article  PubMed  Google Scholar 

  29. Avril N, Rosé CA, Schelling M, Dose J, Kuhn W, Bense S, Weber W, Ziegler S, Graeff H, Schwaiger M (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18(20):3495–3502

    CAS  PubMed  Google Scholar 

  30. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A (2006) Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat 98(3):267–274

    Article  PubMed  Google Scholar 

  31. Tabouret-Viaud C, Botsikas D, Delattre BM, Mainta I, Amzalag G, Rager O, Vinh-Hung V, Miralbell R, Ratib O (2015) PET/MR in Breast Cancer. Semin Nucl Med 45(4):304–321

    Article  PubMed  Google Scholar 

  32. Taneja S, Jena A, Goel R, Sarin R, Kaul S (2014) Simultaneous whole-body 18F-FDG PET-MRI in primary staging of breast cancer: a pilot study. Eur J Radiol 83(12):2231–2239

    Article  PubMed  Google Scholar 

  33. Kong EJ, Chun KA, Bom HS, Lee J, Lee SJ, Cho IH (2014) Initial experience of integrated PET/MR mammography in patients with invasive ductal carcinoma. Hell J Nucl Med 17(3):171–176

    PubMed  Google Scholar 

  34. Jalaguier-Coudray A, Delarbre B, Brenot-Rossi I, Houvenaeghel G, Villard-Mahjoub R, Viens P, Thomassin-Naggara I (2016) Contribution of FDG PET/CT for the optimization of the management of additional lesions detected on local staging breast MRI. Am J Roentgenol 206(4):891–900

    Article  Google Scholar 

  35. Melsaether AN, Raad RA, Pujara AC, Ponzo FD, Pysarenko KM, Jhaveri K, Babb JS, Sigmund EE, Kim SG, Moy LA (2016) Comparison of whole-body (18)F FDG PET/MR imaging and whole-body (18)F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer. Radiology 29:151155

    Google Scholar 

  36. Semelka RC, Armao DM, Elias J Jr, Huda W (2007) Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J Magn Reson Imaging 25(5):900–909

    Article  PubMed  Google Scholar 

  37. Kong E, Cho I (2015) Clinical issues regarding misclassification by dixon based PET/MR attenuation correction. Hell J Nucl Med 18(1):42–47

    PubMed  Google Scholar 

  38. Schramm G, Maus J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, Platzek I, van den Hoff J (2014) Evaluation and automatic correction of metal-implant-induced artifacts in MR-based attenuation correction in whole-body PET/MR imaging. Phys Med Biol 59(11):2713–2726

    Article  CAS  PubMed  Google Scholar 

  39. Kartmann R, Paulus DH, Braun H, Aklan B, Ziegler S, Navalpakkam BK, Lentschig M, Quick HH (2013) Integrated PET/MR imaging: automatic attenuation correction of flexible RF coils. Med Phys 40(8):082301

    Article  PubMed  Google Scholar 

  40. Vogel WV, Oyen WJ, Barentsz JO, Kaanders JH, Corstens FH (2004) PET/CT: panacea, redundancy, or something in between? J Nucl Med 45(Suppl 1):15S–24S

    PubMed  Google Scholar 

  41. Sardanelli F, Boetes C, Borisch B, Decker T, Federico M, Gilbert FJ, Helbich T, Heywang-Köbrunner SH, Kaiser WA, Kerin MJ, Mansel RE, Marotti L, Martincich L, Mauriac L, Meijers-Heijboer H, Orecchia R, Panizza P, Ponti A, Purushotham AD, Regitnig P, Del Turco MR, Thibault F, Wilson R (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 46(8):1296–1316

    Article  PubMed  Google Scholar 

  42. Teixeira SC, Koolen BB, Vogel WV, Wesseling J, Stokkel MP, Vrancken Peeters MJ, van der Noort V, Rutgers EJ, Valdés Olmos RA (2016) Additional Prone 18F-FDG PET/CT acquisition to improve the visualization of the primary tumor and regional lymph node metastases in stage II/III breast cancer. Clin Nucl Med 41(4):e181–e186

    Article  PubMed  Google Scholar 

  43. Moy L, Noz ME, Maguire GQ Jr, Ponzo F, Deans AE, Murphy-Walcott AD, Kramer EL (2007) Prone mammoPET acquisition improves the ability to fuse MRI and PET breast scans. Clin Nucl Med 32(3):194–198

    Article  PubMed  Google Scholar 

  44. Aklan B, Paulus DH, Wenkel E, Braun H, Navalpakkam BK, Ziegler S, Geppert C, Sigmund EE, Melsaether A, Quick HH (2013) Toward simultaneous PET/MR breast imaging: systematic evaluation and integration of a radiofrequency breast coil. Med Phys 40(2):024301

    Article  PubMed  Google Scholar 

  45. Dmitriev ID, Loo CE, Vogel WV, Pengel KE, Gilhuijs KG (2013) Fully automated deformable registration of breast DCE-MRI and PET/CT. Phys Med Biol 58(4):1221–1233

    Article  CAS  PubMed  Google Scholar 

  46. Unlu MZ, Krol A, Magri A, Mandel JA, Lee W, Baum KG, Lipson ED, Coman IL, Feiglin DH (2010) Computerized method for nonrigid MR-to-PET breast-image registration. Comput Biol Med 40(1):37–53

    Article  CAS  PubMed  Google Scholar 

  47. Heusner TA, Hahn S, Jonkmanns C, Kuemmel S, Otterbach F, Hamami ME, Stahl AR, Bockisch A, Forsting M, Antoch G (2011) Diagnostic accuracy of fused positron emission tomography/magnetic resonance mammography: initial results. Br J Radiol 84(998):126–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abramson RG, Lambert KF, Jones-Jackson LB, Arlinghaus LR, Williams J, Abramson VG, Chakravarthy AB, Yankeelov TE (2015) Prone versus supine breast FDG-PET/CT for assessing locoregional disease distribution in locally advanced breast cancer. Acad Radiol 22(7):853–859

    Article  PubMed  PubMed Central  Google Scholar 

  49. Prevos R, Smidt ML, Tjan-Heijnen VC, van Goethem M, Beets-Tan RG, Wildberger JE, Lobbes MB (2012) Pre-treatment differences and early response monitoring of neoadjuvant chemotherapy in breast cancer patients using magnetic resonance imaging: a systematic review. Eur Radiol 22(12):2607–2616

    Article  CAS  PubMed  Google Scholar 

  50. Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Vrancken Peeters MJ, Gilhuijs KG (2011) Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol 29(6):660–666

    Article  PubMed  Google Scholar 

  51. Pengel KE, Koolen BB, Loo CE, Vogel WV, Wesseling J, Lips EH, Rutgers EJ, Valdés Olmos RA, Vrancken Peeters MJ, Rodenhuis S, Gilhuijs KG (2014) Combined use of 18F-FDG PET/CT and MRI for response monitoring of breast cancer during neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 41(8):1515–1524

    Article  CAS  PubMed  Google Scholar 

  52. Koolen BB, Pengel KE, Wesseling J, Vogel WV, Vrancken Peeters MJ, Vincent AD, Gilhuijs KG, Rodenhuis S, Rutgers EJ, Valdés Olmos RA (2013) FDG PET/CT during neoadjuvant chemotherapy may predict response in ER-positive/HER2-negative and triple negative, but not in HER2-positive breast cancer. Breast 22(5):691–697

    Article  PubMed  Google Scholar 

  53. Hsiang DJ, Yamamoto M, Mehta RS, Su MY, Baick CH, Lane KT, Butler JA (2007) Predicting nodal status using dynamic contrast-enhanced magnetic resonance imaging in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy with and without sequential trastuzumab. Arch Surg 142(9):855–861 (discussion 860-1)

    Article  PubMed  Google Scholar 

  54. García Vicente AM, Soriano Castrejón Á, León Martín A, Relea Calatayud F, Muñoz Sánchez MDM, Cruz Mora MÁ, Jiménez Londoño GA, Espinosa Aunión R (2014) Early and delayed prediction of axillary lymph node neoadjuvant response by (18)F-FDG PET/CT in patients with locally advanced breast cancer. Eur J Nucl Med Mol Imaging 41(7):1309–1318

    Article  PubMed  Google Scholar 

  55. Koolen BB, Valdés Olmos RA, Wesseling J, Vogel WV, Vincent AD, Gilhuijs KG, Rodenhuis S, Rutgers EJ, Vrancken Peeters MJ (2013) Early assessment of axillary response with 18F-FDG PET/CT during neoadjuvant chemotherapy in stage II–III breast cancer: implications for surgical management of the axilla. Ann Surg Oncol 20(7):2227–2235

    Article  PubMed  Google Scholar 

  56. Schipper RJ, Moossdorff M, Beets-Tan RG, Smidt ML, Lobbes MB (2015) Noninvasive nodal restaging in clinically node positive breast cancer patients after neoadjuvant systemic therapy: a systematic review. Eur J Radiol 84(1):41–47

    Article  CAS  PubMed  Google Scholar 

  57. Hieken TJ, Boughey JC, Jones KN, Shah SS, Glazebrook KN (2013) Imaging response and residual metastatic axillary lymph node disease after neoadjuvant chemotherapy for primary breast cancer. Ann Surg Oncol 20(10):3199–3204

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. V. Vogel.

Ethics declarations

Conflict of interest

The authors W. V. Vogel, U. Nestle, and M. C. Valli do not have any financial or personal conflicts of interest to report. This article does not contain any studies with human or animal subjects performed by the any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, W.V., Nestle, U. & Valli, M.C. PET/MRI in breast cancer. Clin Transl Imaging 5, 71–78 (2017). https://doi.org/10.1007/s40336-016-0202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-016-0202-y

Keywords

Navigation