Skip to main content
Log in

Dose optimization for myocardial perfusion CZT-SPECT imaging: Why and how?

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Myocardial perfusion SPECT imaging (MPI) is able to provide a physiological assessment during physical exercise and is widely used for diagnosing coronary artery disease and assessing cardiac risk. Until recently, however, MPI needed to provide a lower radiation exposure, especially for the growing number of patients referred for repeated ionizing procedures throughout the course of their life. This goal has been partly attained with the advent of new imaging systems dedicated to nuclear cardiology and equipped with semiconductor cadmium zinc telluride (CZT) detectors, new collimation systems, and novel reconstruction software. Two CZT cameras are currently commercially available and when compared with conventional Anger cameras, they offer much higher energy resolutions and count sensitivities, allowing image quality to be improved as well as acquisition times and injected activities to be markedly reduced. Low-dose protocols have already been assessed with these CZT cameras, leading to a mean effective dose not exceeding 9 mSv per patient and thus, at a much lower level than that currently achieved with single-day protocols on conventional cameras (around 14 mSv). These doses can furthermore be reduced to less than 4 mSv, on average, owing to the use of a stress-first protocol, where the normality of stress images may lead to avoiding rest imaging. In the near future, effective doses will likely be further decreased to a lower level with technical improvements leading to minimizing the reconstructed noise and attenuation artifacts while at the same time optimizing and better tailoring the injection protocols to the individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. David N, Marie PY, Angioi M et al (2000) Dipyridamole and exercise SPET provide different estimates of myocardial ischaemic areas: role of the severity of coronary stenoses and of the increase in heart rate during exercise. Eur J Nucl Med 27(7):788–799

    Article  CAS  PubMed  Google Scholar 

  2. Sharma K, Kohli P, Gulati M (2012) An update on exercise stress testing. Curr Probl Cardiol 37(5):177–202

    Article  PubMed  Google Scholar 

  3. Marie PY, Danchin N, Branly F et al (1999) Effects of medical therapy on outcome assessment using exercise thallium-201 single photon emission computed tomography imaging: evidence of a protective effect of beta-blocking antianginal medications. J Am Coll Cardiol 34(1):113–121

    Article  CAS  PubMed  Google Scholar 

  4. Marie PY, Mercennier C, Danchin N et al (2003) Residual exercise SPECT ischemia on treatment is a main determinant of outcome in patients with coronary artery disease treated medically at long-term with beta-blockers. J Nucl Cardiol 10(4):361–368

    Article  PubMed  Google Scholar 

  5. Carpeggiani C, Landi P, Michelassi C, Marraccini P, Picano E (2012) Trends of increasing medical radiation exposure in a population hospitalized for cardiovascular disease (1970–2009). PLoS One 7(11):e50168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sabarudin A, Sun Z, Ng KH (2012) A systematic review of radiation dose associated with different generations of multidetector CT coronary angiography. J Med Imaging Radiat Oncol 56(1):5–17

    Article  PubMed  Google Scholar 

  7. Einstein AJ, Weiner SD, Bernheim A et al (2010) Multiple testing, cumulative radiation dose, and clinical indications in patients undergoing myocardial perfusion imaging. JAMA 304(19):2137–2144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Martin CJ (2007) Effective dose: How should it be applied to medical exposures? Br J Radiol 80(956):639–647

    Article  CAS  PubMed  Google Scholar 

  9. Lancellotti P, Nkomo VT, Badano LP et al (2013) Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 14(8):721–740

    Article  PubMed  Google Scholar 

  10. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167(4):396–416

    Article  CAS  PubMed  Google Scholar 

  11. Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64

    Article  CAS  PubMed  Google Scholar 

  12. Eisenberg MJ, Afilalo J, Lawler PR, Abrahamowicz M, Richard H, Pilote L (2011) Cancer risk related to low-dose ionizing radiation from cardiac imaging in patients after acute myocardial infarction. CMAJ 183(4):430–436

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hung MC, Hwang JJ (2013) Cancer risk from medical radiation procedures for coronary artery disease: a nationwide population-based cohort study. Asian Pac J Cancer Prev 14(5):2783–2787

    Article  PubMed  Google Scholar 

  14. Carpeggiani C, Rossi G, Landi P et al (2015) Long-term outcome and medical radiation exposure in patients hospitalized for cardiovascular disease. Int J Cardiol 195:30–36

    Article  PubMed  Google Scholar 

  15. UNSCEAR 2008 report: sources and effects of ionizing radiation, vol I. http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_A.pdf. 9 Sept 2013

  16. Hesse B, Tagil K, Cuocolo A et al (2005) EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 32(7):855–897

    Article  CAS  PubMed  Google Scholar 

  17. Cousins C, Miller DL, Bernardi G et al (2013) ICRP Publication 120: radiological protection in cardiology. Ann ICRP 42(1):1–125

    Article  CAS  PubMed  Google Scholar 

  18. Klocke FJ, Baird MG, Lorell BH et al (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation 108(11):1404–1418

    Article  PubMed  Google Scholar 

  19. Nkoulou R, Pazhenkottil AP, Kuest SM et al (2011) Semiconductor detectors allow low-dose–low-dose 1-day SPECT myocardial perfusion imaging. J Nucl Med 52(8):1204–1209

    Article  PubMed  Google Scholar 

  20. Duvall WL, Croft LB, Ginsberg ES et al (2011) Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol 18(5):847–857

    Article  PubMed  Google Scholar 

  21. Gimelli A, Bottai M, Quaranta A, Giorgetti A, Genovesi D, Marzullo P (2013) Gender differences in the evaluation of coronary artery disease with a cadmium–zinc telluride camera. Eur J Nucl Med Mol Imaging 40(10):1542–1548

    Article  CAS  PubMed  Google Scholar 

  22. Esteves FP, Galt JR, Folks RD, Verdes L, Garcia EV (2014) Diagnostic performance of low-dose rest/stress Tc-99m tetrofosmin myocardial perfusion SPECT using the 530c CZT camera: quantitative vs visual analysis. J Nucl Cardiol 21(1):158–165

    Article  PubMed  Google Scholar 

  23. Perrin M, Djaballah W, Moulin F et al (2015) Stress-first protocol for myocardial perfusion SPECT imaging with semiconductor cameras: high diagnostic performances with significant reduction in patient radiation doses. Eur J Nucl Med Mol Imaging 42(7):1004–1011

    Article  CAS  PubMed  Google Scholar 

  24. Hindorf C, Oddstig J, Hedeer F, Hansson MJ, Jögi J, Engblom H (2014) Importance of correct patient positioning in myocardial perfusion SPECT when using a CZT camera. J Nucl Cardiol 21(4):695–702

    Article  PubMed  Google Scholar 

  25. Sharir T, Pinskiy M, Pardes A, Rochman A, Prokhorov V, Kovalski G et al (2015) Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: automated quantification of one-day, stress-first SPECT using a CZT camera. J Nucl Cardiol May 27. [Epub ahead of print]

  26. Verger A, Imbert L, Yagdigul Y et al (2014) Factors affecting the myocardial activity acquired during exercise SPECT with a high-sensitivity cardiac CZT camera as compared with conventional Anger camera. Eur J Nucl Med Mol Imaging 41(3):522–528

    Article  PubMed  Google Scholar 

  27. Imbert L, Poussier S, Franken PR et al (2012) Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 53(12):1897–1903

    Article  PubMed  Google Scholar 

  28. Zoccarato O, Lizio D, Savi A et al (2015) Comparative analysis of cadmium–zinc–telluride cameras dedicated to myocardial perfusion SPECT: a phantom study. J Nucl Cardiol Jul 2. [Epub ahead of print]

  29. Imbert L, Marie PY (2015) CZT cameras: a technological jump for myocardial perfusion SPECT. J Nucl Cardiol Jun 25. [Epub ahead of print]

  30. Erlandsson K, Kacperski K, Van Gramberg D, Hutton BF (2009) Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol 54:2635–2649

    Article  PubMed  Google Scholar 

  31. Verger A, Djaballah W, Fourquet N et al (2013) Comparison between stress myocardial perfusion SPECT recorded with cadmium–zinc–telluride and Anger cameras in various study protocols. Eur J Nucl Med Mol Imaging 40(3):331–340

    Article  CAS  PubMed  Google Scholar 

  32. Kapur A, Latus KA, Davies G et al (2002) A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. Eur J Nucl Med Mol Imaging 29(12):1608–1616

    Article  CAS  PubMed  Google Scholar 

  33. Robinson CN, van Aswegen A, Julious SA et al (2008) The relationship between administered radiopharmaceutical activity in myocardial perfusion scintigraphy and imaging outcome. Eur J Nucl Med Mol Imaging 35(2):329–335

    Article  CAS  PubMed  Google Scholar 

  34. Taillefer R, Gagnon A, Laflamme L, Grégoire J, Léveillé J, Phaneuf DC (1989) Same day injections of Tc-99m methoxy isobutyl isonitrile (hexamibi) for myocardial tomographic imaging: comparison between rest–stress and stress–rest injection sequences. Eur J Nucl Med 15(3):113–117

    Article  CAS  PubMed  Google Scholar 

  35. Heo J, Kegel J, Iskandrian AS, Cave V, Iskandrian BB (1992) Comparison of same-day protocols using technetium-99m-sestamibi myocardial imaging. J Nucl Med 33(2):186–191

    CAS  PubMed  Google Scholar 

  36. Duvall WL, Henzlova MJ (2015) Nuclear cardiology as it should look in the twenty-first century. J Nucl Cardiol May 14. [Epub ahead of print]

  37. Ayalew A, Marie PY, Menu P et al (2000) A comparison of the overall first-pass kinetics of thallium-201 and technetium-99m MIBI in normoxic and low-flow ischaemic myocardium. Eur J Nucl Med 27(11):1632–1640

    Article  CAS  PubMed  Google Scholar 

  38. Ayalew A, Marie PY, Menu P et al (2002) (201)Tl and (99m)Tc-MIBI retention in an isolated heart model of low-flow ischemia and stunning: evidence of negligible impact of myocyte metabolism on tracer kinetics. J Nucl Med 43(4):566–574

    CAS  PubMed  Google Scholar 

  39. ICRP (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP 38(1–2):1–197. doi:10.1016/j.icrp.2008.08.003

    CAS  PubMed  Google Scholar 

  40. Heller GV (1996) Tracer selection with different stress modalities based on tracer kinetics. J Nucl Cardiol 3(6 Pt 2):S15–S21

    Article  CAS  PubMed  Google Scholar 

  41. Kailasnath P, Sinusas AJ (2001) Comparison of Tl-201 with Tc-99m-labeled myocardial perfusion agents: technical, physiologic, and clinical issues. J Nucl Cardiol 8(4):482–498

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Imbert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbert, L., Perrin, M., Verger, A. et al. Dose optimization for myocardial perfusion CZT-SPECT imaging: Why and how?. Clin Transl Imaging 4, 13–20 (2016). https://doi.org/10.1007/s40336-015-0152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-015-0152-9

Keywords

Navigation