Skip to main content

Advertisement

Log in

Dose optimization in nuclear medicine therapy of benign and malignant thyroid diseases

  • Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

The iodine isotope I-131 has been used in nuclear medicine for several decades to treat both benign and malignant thyroid diseases. The therapy is effective and safe and insensitive to variations in the activity dosage of I-131. Individualization of therapy in order to limit the administered activity to the lowest amount necessary to successfully treat diseased thyrocytes while minimizing exposure to healthy organs requires performing dosimetry through measurement of the individual iodine kinetics. This review discusses the concepts of dosimetry used for patients with thyroid disorders and compiles information on the present evidence for superiority of individualization of therapy by dosimetric assessments. Two main concepts of individualized treatment are used for patients with differentiated thyroid carcinoma: (a) the assessment of the specific absorbed dose to the blood as a substitute for the red marrow dose in order to target at a specific blood dose from therapy and (b) the administration of the I-131 activity determined by lesion dosimetry to be necessary to achieve a fixed absorbed dose to the tumour which is known to be effective in most of the cases. The first concept is mainly used to safely administer the highest tolerable activity, thus enhancing the absorbed dose to the tumour. Increasing evidence exists that patients with advanced disease benefit from this dose optimization. The second concept becomes increasingly feasible with the improvements in dosimetry introduced by advanced imaging techniques like I-124 PET/CT, but bears the inherent risk of under-dosing the patient. Studies reporting response in tumours are not consistent regarding the absorbed dose necessary to certainly eliminate the lesion. In the treatment of benign thyroid diseases, most studies comparing regimes with calculated and estimated activity dosage did not find improved rates of cure and side effects in patients with measured kinetics. A few studies with advanced dosimetric concepts found good dose–response relations. Individualization of radioiodine therapy in the treatment of thyroid disorders still is not used to its full potential. Recently developed imaging techniques like SPECT/CT and PET/CT, enabling 3-dimensional measurement of dose distributions, allow considerable improvements in dosimetry. Prospective randomized trials with appropriate and controlled dosimetry are necessary to provide conclusive information on the value of individualized treatment planning and to identify the major confounding variables responsible for treatment failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Luster M et al (2008) Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 35(10):1941–1959

    Article  PubMed  CAS  Google Scholar 

  2. Cooper DS et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214

    Article  PubMed  Google Scholar 

  3. Stokkel MP et al (2010) EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 37(11):2218–2228

    Article  PubMed  Google Scholar 

  4. Bahn RS et al (2011) Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 21(6):593–646

    Article  CAS  Google Scholar 

  5. Lassmann M et al (2004) Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 45(4):619–625

    PubMed  Google Scholar 

  6. Medvedec M (2005) Thyroid stunning in vivo and in vitro. Nucl Med Commun 26(8):731–735

    Article  PubMed  Google Scholar 

  7. McDougall IR, Iagaru A (2011) Thyroid stunning: fact or fiction? Semin Nucl Med 41(2):105–112

    Article  PubMed  Google Scholar 

  8. Sawka AM et al (2009) Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid 19(5):451–457

    Article  PubMed  CAS  Google Scholar 

  9. Iyer NG et al (2011) Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer 117(19):4439–4446

    Article  PubMed Central  PubMed  Google Scholar 

  10. Van Nostrand D (2011) Sialoadenitis secondary to 131I therapy for well-differentiated thyroid cancer. Oral Dis 17(2):154–161

    Article  PubMed  Google Scholar 

  11. Lee JJ et al (2008) Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma. Ann Nucl Med 22(9):727–734

    Article  PubMed  Google Scholar 

  12. Van Nostrand D et al (2002) Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid 12(2):121–134

    Article  PubMed  Google Scholar 

  13. Lassmann M et al (2008) EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 35(7):1405–1412

    Article  PubMed  Google Scholar 

  14. Jentzen W, Freudenberg L, Bockisch A (2011) Quantitative imaging of (124) I with PET/CT in pretherapy lesion dosimetry. Effects impairing image quantification and their corrections. Q J Nucl Med Mol Imaging 55(1):21–43

    PubMed  CAS  Google Scholar 

  15. Dewaraja YK et al (2013) MIRD pamphlet no. 24: guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med 54(12):2182–2188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Hänscheid H et al (2013) EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging 40(7):1126–1134

    Article  PubMed  CAS  Google Scholar 

  17. Tuttle RM et al (2010) Thyroid carcinoma. J Natl Compr Canc Netw 8(11):1228–1274

    PubMed  Google Scholar 

  18. Hackshaw A et al (2007) Review: (131) I activity for remnant ablation in patients with differentiated thyroid cancer: a systematic review. J Clin Endocrinol Metab 92(1):28–38

    Article  PubMed  CAS  Google Scholar 

  19. Doi SA et al (2007) Ablation of the thyroid remnant and I-131 dose in differentiated thyroid cancer: a meta-analysis revisited. Clin Med Res 5(2):87–90

    Article  PubMed Central  PubMed  Google Scholar 

  20. Verburg FA et al (2014) Long-term survival in differentiated thyroid cancer is worse after low-activity initial post-surgical I-131 therapy in both high- and low-risk patients. J Clin Endocrinol Metab 99(12):4487–4496

    Article  PubMed  CAS  Google Scholar 

  21. Mallick U et al (2012) Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. New Engl J Med 366(18):1674–1685

    Article  PubMed  CAS  Google Scholar 

  22. Schlumberger M et al (2012) Strategies of Radioiodine Ablation in Patients with Low-Risk Thyroid Cancer. New Engl J Med 366(18):1663–1673

    Article  PubMed  CAS  Google Scholar 

  23. Hänscheid H et al (2006) Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med 47(4):648–654

    PubMed  Google Scholar 

  24. Luster M et al (2012) Radioiodine therapy of metastatic lesions of differentiated thyroid cancer. J Endocrinol Investig 35(6):21–29

    CAS  Google Scholar 

  25. Benua RS et al (1962) The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 87:171–182

    PubMed  CAS  Google Scholar 

  26. Maxon HR et al (1983) Relation between effective radiation-dose and outcome of radioiodine therapy for thyroid-cancer. N Engl J Med 309(16):937–941

    Article  PubMed  CAS  Google Scholar 

  27. Benua RS, Leeper R (1986) A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. In: Medeiros-Neto G, Gaitan G (eds) Frontiers in thyroidology. Plenum Medical Book Co, New York, pp 1317–1321

    Google Scholar 

  28. Riggs DS (1952) Quantitative aspects of iodine metabolism in man. Pharmacol Rev 4(3):284–370

    PubMed  CAS  Google Scholar 

  29. Kolbert KS et al (2007) Prediction of absorbed dose to normal organs in thyroid cancer patients treated with I-131 by use of I-124 PET and 3-dimensional internal dosimetry software. J Nucl Med 48(1):143–149

    PubMed  CAS  Google Scholar 

  30. Sgouros G (1993) Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 34(4):689–694

    PubMed  CAS  Google Scholar 

  31. Hindorf C et al (2010) EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging 37(6):1238–1250

    Article  PubMed  Google Scholar 

  32. Eckerman KF, Stabin MG (2000) Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Phys 78(2):199–214

    Article  PubMed  CAS  Google Scholar 

  33. ICRP89 Publication 89 (2002) Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP 32(3–4):1–278

    Google Scholar 

  34. Dorn R et al (2003) Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 44(3):451–456

    PubMed  CAS  Google Scholar 

  35. Kulkarni K et al (2006) The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid 16(10):1019–1023

    Article  PubMed  CAS  Google Scholar 

  36. Tuttle RM et al (2006) Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med 47(10):1587–1591

    PubMed  Google Scholar 

  37. Bianchi L et al (2012) Dosimetry in the therapy of metastatic differentiated thyroid cancer administering high 131I activity: the experience of Busto Arsizio Hospital (Italy). Q J Nucl Med Mol Imaging 56(6):515–521

    PubMed  CAS  Google Scholar 

  38. Reiners C et al (2013) Twenty-five years after chernobyl: outcome of radioiodine treatment in children and adolescents with very high-risk radiation-induced differentiated thyroid carcinoma. J Clin Endocrinol Metab 98(7):3039–3048

    Article  PubMed  CAS  Google Scholar 

  39. Sgouros G et al (2006) Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80 mCi rule. J Nucl Med 47(12):1977–1984

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Song H et al (2006) Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J Nucl Med 47(12):1985–1994

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Hobbs RF et al (2009) I-124 PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 50(11):1844–1847

    Article  PubMed Central  PubMed  Google Scholar 

  42. Verburg FA, Reiners C, Hanscheid H (2013) Approach to the patient: role of dosimetric RAI Rx in children with DTC. J Clin Endocrinol Metab 98(10):3912–3919

    Article  PubMed  CAS  Google Scholar 

  43. Klubo-Gwiezdzinska J et al (2011) Efficacy of dosimetric versus empiric prescribed activity of I-131 for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 96(10):3217–3225

    Article  PubMed  CAS  Google Scholar 

  44. Verburg FA, Hänscheid H, Biko J, Hategan MC, Lassmann M, Kreissl MC, Reiners C, Luster M (2010) Dosimetry-guided high-activity 131I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging 37:896–903

    Article  PubMed  Google Scholar 

  45. Hartung-Knemeyer V et al (2012) Pre-therapeutic blood dosimetry in patients with differentiated thyroid carcinoma using 124-iodine: predicted blood doses correlate with changes in blood cell counts after radioiodine therapy and depend on modes of TSH stimulation and number of preceding radioiodine therapies. Ann Nucl Med 26(9):723–729

    Article  PubMed  CAS  Google Scholar 

  46. Eschmann SM et al (2002) Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 29(6):760–767

    Article  PubMed  CAS  Google Scholar 

  47. Flux GD et al (2010) A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 37(2):270–275

    Article  PubMed  CAS  Google Scholar 

  48. Chiesa C et al (2009) Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging 53(5):546–561

    PubMed  CAS  Google Scholar 

  49. Jentzen W et al (2014) Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using I-124 PET imaging. J Nucl Med 55(11):1759–1765

    Article  PubMed  CAS  Google Scholar 

  50. Freudenberg LS et al (2007) I-124-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nukl Nucl Med 46(4):121–128

    CAS  Google Scholar 

  51. Foster B et al (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96

    Article  PubMed  Google Scholar 

  52. Jentzen W (2015) An improved iterative thresholding method to delineate PET volumes using the delineation-averaged signal instead of the enclosed maximum signal. J Nucl Med Technol 43(1):28–35

    Article  PubMed  Google Scholar 

  53. Sgouros G et al (2004) Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45(8):1366–1372

    PubMed  CAS  Google Scholar 

  54. Jentzen W et al (2008) Optimized I-124 PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 49(6):1017–1023

    Article  PubMed  Google Scholar 

  55. Vaiano A et al (2007) Comparison between remnant and red-marrow absorbed dose in thyroid cancer patients submitted to I-131 ablative therapy after rh-TSH stimulation versus hypothyroidism induced by L-thyroxine withdrawal. Nucl Med Commun 28(3):215–223

    Article  PubMed  CAS  Google Scholar 

  56. Verburg FA et al (2011) The absorbed dose to the blood is a better predictor of ablation success than the administered I-131 activity in thyroid cancer patients. Eur J Nucl Med Mol Imaging 38(4):673–680

    Article  PubMed  CAS  Google Scholar 

  57. Hänscheid H et al (2011) Success of the postoperative I-131 therapy in young Belarusian patients with differentiated thyroid cancer after Chernobyl depends on the radiation absorbed dose to the blood and the thyroglobulin level. Eur J Nucl Med Mol Imaging 38(7):1296–1302

    Article  PubMed  Google Scholar 

  58. Sisson JC, Shulkin BL, Lawson S (2003) Increasing efficacy and safety of treatments of patients with well-differentiated thyroid carcinoma by measuring body retentions of I-131. J Nucl Med 44(6):898–903

    PubMed  CAS  Google Scholar 

  59. Hänscheid H et al (2009) Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocr Relat Cancer 16(4):1283–1289

    Article  PubMed  Google Scholar 

  60. Rawson RW, Rall JE, Peacock W (1951) Limitations and indications in the treatment of cancer of the thyroid with radioactive iodine. J Clin Endocrinol 11(10):1128–1142

    Article  CAS  Google Scholar 

  61. Samuel AM, Rajashekharrao B, Shah DH (1998) Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J Nucl Med 39(9):1531–1536

    PubMed  CAS  Google Scholar 

  62. Verburg FA et al (2010) No survival difference after successful I-131 ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 37(2):276–283

    Article  PubMed  Google Scholar 

  63. Thies ED et al (2014) The number of I-131 therapy courses needed to achieve complete remission is an indicator of prognosis in patients with differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 41(12):2281–2290

    Article  PubMed  Google Scholar 

  64. EUCouncil (1997) Council directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. Official Journal of the European Communities No L 180/22. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31997L0043&rid=4. Accessed 14 Oct 2015

  65. Brunn J et al (1981) Volumetrie der Schilddrüsenlappen mittels Real-time-Sonographie. Dtsch Med Wochenschr 41:1338–1340

    Article  Google Scholar 

  66. Andermann P et al (2007) Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound. Nuklearmedizin 46(1):1–7

    PubMed  CAS  Google Scholar 

  67. Park CS et al (2010) Observer variability in the sonographic evaluation of thyroid nodules. J Clin Ultrasound 38(6):287–293

    PubMed  Google Scholar 

  68. van Isselt JW et al (2003) Comparison of methods for thyroid volume estimation in patients with Graves’ disease. Eur J Nucl Med Mol Imaging 30(4):525–531

    Article  PubMed  Google Scholar 

  69. Bockisch A et al (1993) Optimized dose planning of radioiodine therapy of benign thyroidal diseases. J Nucl Med 34(10):1632–1638

    PubMed  CAS  Google Scholar 

  70. Merrill S et al (2011) Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys Med Biol 56(3):557–571

    Article  PubMed  CAS  Google Scholar 

  71. Hänscheid H, Lassmann M, Reiners C (2011) Dosimetry prior to I-131-therapy of benign thyroid disease. Z Med Phys 21(4):250–257

    Article  PubMed  Google Scholar 

  72. Hammes J et al (2011) GATE based Monte Carlo simulation of planar scintigraphy to estimate the nodular dose in radioiodine therapy for autonomous thyroid adenoma. Z Med Phys 21(4):290–300

    Article  PubMed  Google Scholar 

  73. Peters H et al (1995) Radioiodine therapy of Graves hyperthyroidism—standard vs calculated (131) iodine activity—results from a prospective, randomized, multicenter study. Eur J Clin Investig 25(3):186–193

    Article  CAS  Google Scholar 

  74. Reinhardt MJ et al (2002) Radioiodine therapy in Graves’ disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome. Eur J Nucl Med Mol Imaging 29(9):1118–1124

    Article  PubMed  CAS  Google Scholar 

  75. Strigari L et al (2008) A NTCP approach for estimating the outcome in radioiodine treatment of hyperthyroidism. Med Phys 35(9):3903–3910

    Article  PubMed  CAS  Google Scholar 

  76. Krohn T et al (2014) Maximum dose rate is a determinant of hypothyroidism after I-131 therapy of Graves’ disease but the total thyroid absorbed dose is not. J Clin Endocrinol Metab 99(11):4109–4115

    Article  PubMed  CAS  Google Scholar 

  77. Orsini F et al (2012) Personalization of radioiodine treatment for Graves’ disease: a prospective, randomized study with a novel method for calculating the optimal I-131-iodide activity based on target reduction of thyroid mass. Q J Nucl Med Mol Imaging 56(6):496–502

    PubMed  CAS  Google Scholar 

  78. Traino AC et al (2000) Influence of thyroid volume reduction on calculated dose in radioiodine therapy of Graves’ hyperthyroidism. Phys Med Biol 45(1):121–129

    Article  PubMed  CAS  Google Scholar 

  79. Di Martino F et al (2002) A theoretical model for prescription of the patient-specific therapeutic activity for radioiodine therapy of Graves’ disease. Phys Med Biol 47(9):1493–1499

    Article  PubMed  Google Scholar 

  80. de Jong JA et al (2013) High failure rates after (131) I therapy in Graves hyperthyroidism patients with large thyroid volumes, high iodine uptake, and high iodine turnover. Clin Nucl Med 38(6):401–406

    Article  PubMed  Google Scholar 

  81. De Rooij A et al (2009) Clinical outcomes after estimated versus calculated activity of radioiodine for the treatment of hyperthyroidism: systematic review and meta-analysis. Eur J Endocrinol 161(5):771–777

    Article  PubMed  CAS  Google Scholar 

  82. Rokni H et al (2014) Efficacy of different protocols of radioiodine therapy for treatment of toxic nodular goiter: systematic review and meta-analysis of the literature. Int J Endocrinol Metab 12(2):e14424

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Sun JH et al (1995) Comparison of the outcome between the calculated dosimetry and the estimated dosimetry of 131I in the treatment of hyperthyroidism. Chang Yi Xue Za Zhi 18(4):322–328

    CAS  Google Scholar 

  84. Jarlov AE et al (1995) Is calculation of the dose in radioiodine therapy of hyperthyroidism worth while. Clin Endocrinol 43(3):325–329

    Article  CAS  Google Scholar 

  85. Khanna CM et al (1996) Evaluation of long-term results of two schedules of treatment for toxic multinodular goitre with radioiodine therapy (I 131). J Assoc Physicians India 44(2):102–105

    PubMed  CAS  Google Scholar 

  86. Peters H et al (1997) Treatment of Graves’ hyperthyroidism with radioiodine: results of a prospective randomized study. Thyroid 7(2):247–251

    Article  PubMed  CAS  Google Scholar 

  87. Calegaro JU et al (2000) One-year follow-up of Graves’ disease treatment by four different protocols of radioiodine administration. Panminerva Med 42(4):241–245

    PubMed  CAS  Google Scholar 

  88. Kok SW et al (2000) Clinical outcome after standardized versus dosimetric radioiodine treatment of hyperthyroidism: an equivalence study. Nucl Med Commun 21(11):1071–1078

    Article  PubMed  CAS  Google Scholar 

  89. Leslie WD et al (2003) A randomized comparison of radioiodine doses in Graves’ hyperthyroidism. J Clin Endocrinol Metab 88(3):978–983

    Article  PubMed  CAS  Google Scholar 

  90. Ustun F et al (2005) The incidence of recurrence and hypothyroidism after radioiodine treatment in patients with hyperthyroidism in Trakya, a mild iodine deficiency area, during the period 1991–2003. Ann Nucl Med 19(8):737–742

    Article  PubMed  Google Scholar 

  91. Huysmans DA et al (1993) Long-term results of two schedules of radioiodine treatment for toxic multinodular goitre. Eur J Nucl Med 20(11):1056–1062

    Article  PubMed  CAS  Google Scholar 

  92. Zakavi SR, Mousavi Z, Davachi B (2009) Comparison of four different protocols of I-131 therapy for treating single toxic thyroid nodule. Nucl Med Commun 30(2):169–175

    Article  PubMed  CAS  Google Scholar 

  93. Giovanella L et al (2014) Unstimulated highly sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab 99(2):440–447

    Article  PubMed  CAS  Google Scholar 

  94. Goldsmith SJ (2011) To ablate or not to ablate: issues and evidence involved in I-131 ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma. Semin Nucl Med 41(2):96–104

    Article  PubMed  Google Scholar 

  95. Erdi YE et al (1999) Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging 2(1):41–46

    Article  PubMed  Google Scholar 

  96. Brans B et al (2007) Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 34(5):772–786

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hänscheid.

Ethics declarations

Frederik A. Verburg is a consultant to Bayer and Genzyme. Heribert Hänscheid and Michael Lassmann have nothing to declare.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hänscheid, H., Lassmann, M. & Verburg, F.A. Dose optimization in nuclear medicine therapy of benign and malignant thyroid diseases. Clin Transl Imaging 4, 31–40 (2016). https://doi.org/10.1007/s40336-015-0148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-015-0148-5

Keywords

Navigation