Skip to main content

Advertisement

Log in

Mannose receptor (CD206)-mediated imaging in sentinel lymph node localization

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Sentinel lymph node (SLN) imaging and mapping are used to detect nodal metastasis in patients with a number of cancers for staging and prognosis. Macrophages (especially, tumor-associated macrophages or TAMs in the case of cancer), dendritic cells, and reticuloendothelial cells present in SLN express abundant levels of the mannose receptor (MR; CD206). Therefore, several radio-labeled, mannose-containing molecular agents have been designed to target the MR for imaging of SLN using suitable nuclear techniques. Among them, 99mTc-tilmanocept is an FDA-approved imaging agent for SLN, [99mTc(CO)3]DCM20 is an investigational agent for SLN, and [18F]FDM is an investigational agent for other purposes, but has potential for use in SLN mapping. Several other molecular agents that target the MR such as MR nanobody (MMR Nb) and mannose-functionalized liposomes and nanoparticles, are currently under investigation for imaging and drug delivery in cancers and other diseases, but are also being discussed for their potential future use in SLN mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  CAS  PubMed  Google Scholar 

  2. Fiete DJ, Beranek MC, Baenziger JU (1998) A cysteine-rich domain of the “mannose” receptor mediates Ga1NAc-4-SO4 binding. Proc Natl Acad Sci USA 95:2089–2093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Martinez-Pomares L, Linehan SA, Taylor PR, Gordon S (2001) Binding properties of the mannose receptor. Immunobiology 204:527–535

    Article  CAS  PubMed  Google Scholar 

  4. Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L, Lee YC, Feizi T, Langen H, Nussenzweig MC (2002) Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295:1901

    Article  Google Scholar 

  5. Allavena P, Chieppa M, Monti P, Piemonti L (2004) From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit Rev Immunol 24:179–192

    Article  CAS  PubMed  Google Scholar 

  6. Linehan SA, Martinez-Pomares L, Gordon S (2000) Macrophage lectins in host defence. Microbes Infect 2:279–288

    Article  CAS  PubMed  Google Scholar 

  7. Stahl P, Schlesinger PH, Sigardson E, Rodman JS, Lee YC (1980) Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell 19:207–215

    Article  CAS  PubMed  Google Scholar 

  8. Azad AK, Rajaram MV, Schlesinger LS (2014) Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics. J Cytol Mol Biol 1. doi:10.13188/2325-4653.1000003

  9. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270. doi:10.1016/0167-5699(92)90008-U

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. S1471490602023025 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Allavena P, Chieppa M, Bianchi G, Solinas G, Fabbri M, Laskarin G, Mantovani A (2010) Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin Dev Immunol 2010:547179. doi:10.1155/2010/547179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cook J, Hagemann T (2013) Tumour-associated macrophages and cancer. Curr Opin Pharmacol 13:595–601. doi:10.1016/j.coph.2013.05.017

    Article  CAS  PubMed  Google Scholar 

  13. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6:1670–1690. doi:10.3390/cancers6031670

    Article  CAS  Google Scholar 

  14. Vera DR, Wisner ER, Stadalnik RC (1997) Sentinel node imaging via a nonparticulate receptor-binding radiotracer. J Nucl Med 38:530–535

    CAS  PubMed  Google Scholar 

  15. Vera DR, Wallace AM, Hoh CK, Mattrey RF (2001) A synthetic macromolecule for sentinel node detection: (99 m)Tc-DTPA-mannosyl-dextran. J Nucl Med 42:951–959

    CAS  PubMed  Google Scholar 

  16. Wallace AM, Hoh CK, Darrah DD, Schulteis G, Vera DR (2007) Sentinel lymph node mapping of breast cancer via intradermal administration of Lymphoseek. Nucl Med Biol 34:849–853. doi:10.1016/j.nucmedbio.2007.05.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wallace AM, Ellner SJ, Mendez J, Hoh CK, Salem CE, Bosch CM, Orahood RC, Vera DR (2006) Minimally invasive sentinel lymph node mapping of the pig colon with Lymphoseek. Surgery 139:217–223. doi:10.1016/j.surg.2005.06.038

    Article  PubMed  Google Scholar 

  18. Wallace AM, Hoh CK, Ellner SJ, Darrah DD, Schulteis G, Vera DR (2007) Lymphoseek: a molecular imaging agent for melanoma sentinel lymph node mapping. Ann Surg Oncol 14:913–921

    Article  PubMed  Google Scholar 

  19. Civantos FJ, Zitsch RP, Schuller DE, Agrawal A, Smith RB, Nason R, Petruzelli G, Gourin CG, Wong RJ, Ferris RL, El NA, Ridge JA, Paniello RC, Owzar K, McCall L, Chepeha DB, Yarbrough WG, Myers JN (2010) Sentinel lymph node biopsy accurately stages the regional lymph nodes for T1–T2 oral squamous cell carcinomas: results of a prospective multi-institutional trial. J Clin Oncol 28:1395–1400. doi:10.1200/JCO.2008.20.8777

    Article  PubMed Central  PubMed  Google Scholar 

  20. Blue MS, Metz WL, Shuping J, Abbruzzese BC, Reininger C, Colborn DC, Potter BE, Cope FO (2014) CD206 receptor-targeted 99 mTc-Tilmanocept (TcTm) is equally effective in detection of sentinel lymph nodes (SLNs) in breast cancer (BC), melanoma (ME), and head/neck squamous cell carcinoma (HNSCC) with 99% accuracy. J Nucl Med 55:S1528

    Google Scholar 

  21. Put S, Westhovens R, Lahoutte T, Matthys P (2014) Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques. Arthritis Res Ther 16:208. doi:10.1186/ar4542

    Article  PubMed Central  PubMed  Google Scholar 

  22. Goyal A, Newcombe RG, Chhabra A, Mansel RE (2006) Factors affecting failed localisation and false-negative rates of sentinel node biopsy in breast cancer–results of the ALMANAC validation phase. Breast Cancer Res Treat 99:203–208. doi:10.1007/s10549-006-9192-1

    Article  PubMed  Google Scholar 

  23. Veronesi U, Paganelli G, Viale G, Galimberti V, Luini A, Zurrida S, Robertson C, Sacchini V, Veronesi P, Orvieto E, De CC, Intra M, Tosi G, Scarpa D (1999) Sentinel lymph node biopsy and axillary dissection in breast cancer: results in a large series. J Natl Cancer Inst 91:368–373

    Article  CAS  PubMed  Google Scholar 

  24. Noguchi M, Motomura K, Imoto S, Miyauchi M, Sato K, Iwata H, Ohta M, Kurosumi M, Tsugawa K (2000) A multicenter validation study of sentinel lymph node biopsy by the Japanese Breast Cancer Society. Breast Cancer Res Treat 63:31–40

    Article  CAS  PubMed  Google Scholar 

  25. Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Ashikaga T, Weaver DL, Miller BJ, Jalovec LM, Frazier TG, Noyes RD, Robidoux A, Scarth HM, Mammolito DM, McCready DR, Mamounas EP, Costantino JP, Wolmark N (2007) Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial. Lancet Oncol 8:881–888. doi:10.1016/S1470-2045(07)70278-4

    Article  CAS  PubMed  Google Scholar 

  26. Martin RC, Edwards MJ, Wong SL, Tuttle TM, Carlson DJ, Brown CM, Noyes RD, Glaser RL, Vennekotter DJ, Turk PS, Tate PS, Sardi A, Cerrito PB, McMasters KM (2000) Practical guidelines for optimal gamma probe detection of sentinel lymph nodes in breast cancer: results of a multi-institutional study. For the University of Louisville Breast Cancer Study Group. Surgery 128:139–144 S0039606000429934 [pii]

    Article  PubMed  Google Scholar 

  27. Chagpar AB, Martin RC, Scoggins CR, Carlson DJ, Laidley AL, El-Eid SE, McGlothin TQ, Noyes RD, Ley PB, Tuttle TM, McMasters KM (2005) Factors predicting failure to identify a sentinel lymph node in breast cancer. Surgery 138:56–63. doi:10.1016/j.surg.2005.03.003

    Article  PubMed  Google Scholar 

  28. Styblo T, Aarsvold JN, Grant SF, Cohen C, Larsen T, Waldrop S, Alazraki NP (2001) Sentinel lymph nodes: optimizing success. Semin Roentgenol 36:261–269

    Article  CAS  PubMed  Google Scholar 

  29. Clement O, Luciani A (2004) Imaging the lymphatic system: possibilities and clinical applications. Eur Radiol 14:1498–1507. doi:10.1007/s00330-004-2265-9

    Article  PubMed  Google Scholar 

  30. de Paulis T (2006) Drug evaluation: lymphoseek—Neoprobe’s sentinel lymph node imaging agent for use in cancer patients. Curr Opin Investig Drugs 7:1100–1107

    PubMed  Google Scholar 

  31. Edreira MM, Colombo LL, Perez JH, Sajaroff EO, de Castiglia SG (2001) In vivo evaluation of three different 99 mTc-labelled radiopharmaceuticals for sentinel lymph node identification. Nucl Med Commun 22:499–504

    Article  CAS  PubMed  Google Scholar 

  32. Schoder H, Glass EC, Pecking AP, Harness JK, Wallace AM, Hirnle P, Alberini JL, Vilain D, Larson SM, Hoh CK, Vera DR (2006) Molecular targeting of the lymphovascular system for imaging and therapy. Cancer Metastasis Rev 25:185–201. doi:10.1007/s10555-006-8498-0

    Article  PubMed  Google Scholar 

  33. Hoh CK, Wallace AM, Vera DR (2003) Preclinical studies of [(99 m)Tc]DTPA-mannosyl-dextran. Nucl Med Biol 30:457–464 S0969805103000283 [pii]

    Article  CAS  PubMed  Google Scholar 

  34. Tausch C, Baege A, Rageth C (2014) Mapping lymph nodes in cancer management—role of (99 m)Tc-tilmanocept injection. Onco Targets Ther 7:1151–1158. doi:10.2147/OTT.S50394

    Article  PubMed Central  PubMed  Google Scholar 

  35. Leong SP, Kim J, Ross M, Faries M, Scoggins CR, Metz WL, Cope FO, Orahood RC (2011) A phase 2 study of (99m)Tc-tilmanocept in the detection of sentinel lymph nodes in melanoma and breast cancer. Ann Surg Oncol 18:961–969. doi:10.1245/s10434-010-1524-z

    Article  PubMed Central  PubMed  Google Scholar 

  36. Emerson DK, Limmer KK, Hall DJ, Han SH, Eckelman WC, Kane CJ, Wallace AM, Vera DR (2012) A receptor-targeted fluorescent radiopharmaceutical for multireporter sentinel lymph node imaging. Radiology 265:186–193. doi:10.1148/radiol.12120638

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mendez J, Wallace AM, Hoh CK, Vera DR (2003) Detection of gastric and colonic sentinel nodes through endoscopic administration of 99mTc-DTPA-mannosyl-dextran in pigs. J Nucl Med 44:1677–1681

    CAS  PubMed  Google Scholar 

  38. Ellner SJ, Mendez J, Vera DR, Hoh CK, Ashburn WL, Wallace AM (2004) Sentinel lymph node mapping of the colon and stomach using lymphoseek in a pig model. Ann Surg Oncol 11:674–681. doi:10.1245/ASO.2004.06.007

    Article  PubMed  Google Scholar 

  39. Salem CE, Hoh CK, Wallace AM, Vera DR (2006) A preclinical study of prostate sentinel lymph node mapping with [99mTC]diethylenetetramine pentaacetic acid-mannosyl-dextran. J Urol 175:744–748. doi:10.1016/S0022-5347(05)00139-4

    Article  PubMed  Google Scholar 

  40. Ellner SJ, Hoh CK, Vera DR, Darrah DD, Schulteis G, Wallace AM (2003) Dose-dependent biodistribution of [(99m)Tc]DTPA-mannosyl-dextran for breast cancer sentinel lymph node mapping. Nucl Med Biol 30:805–810

    Article  CAS  PubMed  Google Scholar 

  41. Wallace AM, Hoh CK, Vera DR, Darrah DD, Schulteis G (2003) Lymphoseek: a molecular radiopharmaceutical for sentinel node detection. Ann Surg Oncol 10:531–538

    Article  PubMed  Google Scholar 

  42. Sondak VK, King DW, Zager JS, Schneebaum S, Kim J, Leong SP, Faries MB, Averbook BJ, Martinez SR, Puleo CA, Messina JL, Christman L, Wallace AM (2013) Combined analysis of phase III trials evaluating [(99m)Tc]tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol 20:680–688. doi:10.1245/s10434-012-2612-z

    Article  PubMed Central  PubMed  Google Scholar 

  43. Wallace AM, Han LK, Povoski SP, Deck K, Schneebaum S, Hall NC, Hoh CK, Limmer KK, Krontiras H, Frazier TG, Cox C, Avisar E, Faries M, King DW, Christman L, Vera DR (2013) Comparative evaluation of [(99m)tc]tilmanocept for sentinel lymph node mapping in breast cancer patients: results of two phase 3 trials. Ann Surg Oncol 20:2590–2599. doi:10.1245/s10434-013-2887-8

    Article  PubMed Central  PubMed  Google Scholar 

  44. Tokin CA, Cope FO, Metz WL, Blue MS, Potter BM, Abbruzzese BC, Hartman RD, Joy MT, King DW, Christman LA, Vera DR, Wallace AM (2012) The efficacy of Tilmanocept in sentinel lymph mode mapping and identification in breast cancer patients: a comparative review and meta-analysis of the (99m)Tc-labeled nanocolloid human serum albumin standard of care. Clin Exp Metastasis 29:681–686. doi:10.1007/s10585-012-9497-x

    Article  CAS  PubMed  Google Scholar 

  45. Marcinow AM, Hall N, Byrum E, Teknos TN, Old MO, Agrawal A (2013) Use of a novel receptor-targeted (CD206) radiotracer, 99mTc-tilmanocept, and SPECT/CT for sentinel lymph node detection in oral cavity squamous cell carcinoma: initial institutional report in an ongoing phase 3 study. JAMA Otolaryngol Head Neck Surg 139:895–902. doi:10.1001/jamaoto.2013.4239

    Article  PubMed Central  PubMed  Google Scholar 

  46. Pirmettis I, Arano Y, Tsotakos T, Okada K, Yamaguchi A, Uehara T, Morais M, Correia JD, Santos I, Martins M, Pereira S, Triantis C, Kyprianidou P, Pelecanou M, Papadopoulos M (2012) New (99m)Tc(CO)(3) mannosylated dextran bearing S-derivatized cysteine chelator for sentinel lymph node detection. Mol Pharm 9:1681–1692. doi:10.1021/mp300015s

    Article  CAS  PubMed  Google Scholar 

  47. Morais M, Subramanian S, Pandey U, Samuel G, Venkatesh M, Martins M, Pereira S, Correia JD, Santos I (2011) Mannosylated dextran derivatives labeled with fac-[M(CO)(3)] + (M = (99m)Tc, Re) for specific targeting of sentinel lymph node. Mol Pharm 8:609–620. doi:10.1021/mp100425p

    Article  CAS  PubMed  Google Scholar 

  48. Subramanian S, Pandey U, Morais M, Correia JD, Santos I, Samuel G (2014) Comparative biological evaluation of two [99mTc(CO)3]-dextran pyrazolyl mannose conjugates developed for use in sentinel lymph node detection. Q J Nucl Med Mol Imaging 58:216–223 R39Y9999N00A0061 [pii]

    CAS  PubMed  Google Scholar 

  49. Subramanian S, Pandey U, Papadopoulos M, Pirmettis I, Venkatesh M, Samuel G (2012) Studies toward the biological efficacy of (99m)Tc-labeled dextran-cysteine-mannose ([(99m)Tc(CO)(3)]DCM20) for sentinel lymph node detection. Cancer Biother Radiopharm 27:365–370. doi:10.1089/cbr.2011.1131

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi A, Hanaoka H, Pirmettis I, Uehara T, Tsushima Y, Papadopoulos M, Arano Y (2014) Injection site radioactivity of Tc-labeled mannosylated dextran for sentinel lymph node mapping. Mol Pharm. doi:10.1021/mp500592e

    PubMed  Google Scholar 

  51. Tahara N, Mukherjee J, de Haas HJ, Petrov AD, Tawakol A, Haider N, Tahara A, Constantinescu CC, Zhou J, Boersma HH, Imaizumi T, Nakano M, Finn A, Fayad Z, Virmani R, Fuster V, Bosca L, Narula J (2014) 2-deoxy-2-[18F]fluoro-d-mannose positron emission tomography imaging in atherosclerosis. Nat Med 20:215–219. doi:10.1038/nm.3437

    Article  CAS  PubMed  Google Scholar 

  52. Goerres GW, Forster A, Uebelhart D, Seifert B, Treyer V, Michel B, von Schulthess GK, Kaim AH (2006) F-18 FDG whole-body PET for the assessment of disease activity in patients with rheumatoid arthritis. Clin Nucl Med 31:386–390. doi:10.1097/01.rlu.0000222678.95218.42

    Article  PubMed  Google Scholar 

  53. Irmler IM, Opfermann T, Gebhardt P, Gajda M, Brauer R, Saluz HP, Kamradt T (2010) In vivo molecular imaging of experimental joint inflammation by combined (18)F-FDG positron emission tomography and computed tomography. Arthritis Res Ther 12:R203. doi:10.1186/ar3176

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mountz JM, Alavi A, Mountz JD (2012) Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat Rev Rheumatol 8:719–728. doi:10.1038/nrrheum.2012.148

    Article  CAS  PubMed  Google Scholar 

  55. Rudd JH, Narula J, Strauss HW, Virmani R, Machac J, Klimas M, Tahara N, Fuster V, Warburton EA, Fayad ZA, Tawakol AA (2010) Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol 55:2527–2535. doi:10.1016/j.jacc.2009.12.061

    Article  PubMed  Google Scholar 

  56. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, Brady TJ, Tawakol A (2010) Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 3:388–397. doi:10.1016/j.jcmg.2010.01.004

    Article  PubMed  Google Scholar 

  57. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, Bouwens L, Lahoutte T, De BP, Raes G, Devoogdt N, Van Ginderachter JA (2012) Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 72:4165–4177. doi:10.1158/0008-5472.CAN-11-2994

    Article  CAS  PubMed  Google Scholar 

  58. Broisat A, Hernot S, Toczek J, De VJ, Riou LM, Martin S, Ahmadi M, Thielens N, Wernery U, Caveliers V, Muyldermans S, Lahoutte T, Fagret D, Ghezzi C, Devoogdt N (2012) Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res 110:927–937. doi:10.1161/CIRCRESAHA.112.265140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Put S, Schoonooghe S, Devoogdt N, Schurgers E, Avau A, Mitera T, D’Huyvetter M, De BP, Raes G, Lahoutte T, Matthys P (2013) SPECT imaging of joint inflammation with Nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J Nucl Med 54:807–814. doi:10.2967/jnumed.112.111781

    Article  CAS  PubMed  Google Scholar 

  60. Locke LW, Mayo MW, Yoo AD, Williams MB, Berr SS (2012) PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials 33:7785–7793. doi:10.1016/j.biomaterials.2012.07.022

    Article  CAS  PubMed  Google Scholar 

  61. Yuan X, Fabregat D, Yoshimoto K, Nagasaki Y (2012) High PEGylation efficiency of pentaethylenehexamine-end poly(ethylene glycol) (mPEG-N6) for active-ester surface. Colloids Surf B Biointerfaces 92:25–29. doi:10.1016/j.colsurfb.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  62. Guillaudeu SJ, Fox ME, Haidar YM, Dy EE, Szoka FC, Frechet JM (2008) PEGylated dendrimers with core functionality for biological applications. Bioconjug Chem 19:461–469. doi:10.1021/bc700264g

    Article  CAS  PubMed  Google Scholar 

  63. Zhu S, Niu M, O’Mary H, Cui Z (2013) Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm. doi:10.1021/mp400216r

    Google Scholar 

  64. Gao J, Chen P, Singh Y, Zhang X, Szekely Z, Stein S, Sinko PJ (2013) Novel monodisperse PEGtide dendrons: design, fabrication, and evaluation of mannose receptor-mediated macrophage targeting. Bioconjug Chem. doi:10.1021/bc400011v

    Google Scholar 

  65. Muthiah M, Vu-Quang H, Kim YK, Rhee JH, Kang SH, Jun SY, Choi YJ, Jeong YY, Cho CS, Park IK (2013) Mannose-poly(ethylene glycol)-linked SPION targeted to antigen presenting cells for magnetic resonance imaging on lymph node. Carbohydr Polym 92:1586–1595. doi:10.1016/j.carbpol.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  66. Al FA, Shaik AS, Afzal S, Al SB, Halwani R (2014) MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int J Nanomed 9:1491–1503. doi:10.2147/IJN.S59394

    Google Scholar 

Download references

Conflict of interest

Abul K. Azad and Larry S. Schlesinger declare no conflict of interest.

Human and animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry S. Schlesinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, A.K., Schlesinger, L.S. Mannose receptor (CD206)-mediated imaging in sentinel lymph node localization. Clin Transl Imaging 3, 237–245 (2015). https://doi.org/10.1007/s40336-015-0117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-015-0117-z

Keywords

Navigation