Skip to main content
Log in

Comparison of three evapotranspiration models with eddy covariance measurements for a Populus euphratica Oliv. forest in an arid region of northwestern China

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

The accurate estimation of evapotranspiration (ET) in arid regions is important for improving the water use efficiency of vegetation. Based on successive observations from May to October of 2014, we estimated the ET of a Populus euphratica Oliv. forest during the growing season in an extremely arid region using the PM (Penman-Monteith), SW (Shuttleworth-Wallace) and SSW (an improved canopy transpiration model) models. Estimated ET values were compared with those of the eddy covariance measurements. Results indicated that the actual ET of the P. euphratica forest was always overestimated by the PM model. The accuracy of the SW model was higher than that of the PM model. However, some data were not easily obtained because of the complicated structure of the SW model. The newly proposed SSW model gave the most accurate ET values, and its accuracy was higher at hourly than at daily time scale. In conclusion, the SSW model is more suitable for sparse vegetation system at large scales in extremely arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ács F. 2003. A comparative analysis of transpiration and bare soil evaporation. Boundary-Layer Meteorology, 109: 139–162.

    Article  Google Scholar 

  • Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration-guidelines for computing crop water requirements. In: FAO Irrigation and Drainage Paper, No. 56. Rome: FAO.

  • Allen S J, Grime V L. 1995. Measurements of transpiration from savannah shrubs using sap flow gauges. Agricultural and Forest Meteorology, 75(1–3): 23–41.

    Article  Google Scholar 

  • Brisson N, Itier B, L’Hotel J C, et al. 1998. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models. Ecological Modelling, 107(2–3): 159–169.

    Article  Google Scholar 

  • Burba G, Schmidt A, Scott RL, et al. 2012. Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 18(1): 385–399.

    Article  Google Scholar 

  • Campbell G S, Norman J M. 1989. The description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis P G. Plant Canopies: Their Growth Form, and Function. Cambridge: Cambridge University Press, 1–19.

    Chapter  Google Scholar 

  • Cienciala E, Eckersten H, Lindroth A, et al. 1994. Simulated and measured water uptake by Picea abies under non-limiting soil water conditions. Agricultural and Forest Meteorology, 71(1–3): 147–164.

    Article  Google Scholar 

  • Dolman A J. 1993. A multiple-source land surface energy balance model for use in general circulation models. Agricultural and Forest Meteorology, 65(1–3): 21–45.

    Article  Google Scholar 

  • Domingo F, Villagarcía L, Brenner A J, et al. 1999. Evapotranspiration model for semi-arid shrub-lands tested against data from SE Spain. Agricultural and Forest Meteorology, 95(2): 67–84.

    Article  Google Scholar 

  • Evett S R, Matthias A D, Warrick A W. 1994. Energy balance model of spatially variable evaporation from bare soil. Soil Science Society of America Journal, 58(6): 1604–1611.

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R, et al. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1): 43–69.

    Article  Google Scholar 

  • Farahani H J, Ahuja L R. 1996. Evapotranspiration modeling of partial canopy/residue-covered fields. Transaction of the American Society of Agricultural and Biological Engineers, 39(6): 2051–2064.

    Article  Google Scholar 

  • Fisher J B, De Biase T A, Qi Y, et al. 2005. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modelling and Software, 20(6): 783–796.

    Article  Google Scholar 

  • Foken T, Göockede M, Mauder M, et al. 2004. Post-field data quality control. In: Lee X H, Massman W, Law B. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. New York: Kluwer Academic Publishers, 181–208.

    Google Scholar 

  • Gasca-Tucker D L, Acreman M C, Agnew C T, et al. 2007. Estimating evaporation from a wet grassland. Hydrology and Earth System Sciences, 11(1): 270–282.

    Article  Google Scholar 

  • Gharsallah O, Facchi A, Gandolfi C. 2013. Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agricultural Water Management, 130: 119–130.

    Article  Google Scholar 

  • Guan H D, Wilson J L. 2009. A hybrid dual-source model for potential evaporation and transpiration partitioning. Journal of Hydrology, 377(3–3): 405–416.

    Article  Google Scholar 

  • Hu Z M, Yu G R, Zhou Y L, et al. 2009. Partitioning of evapotranspiration and its controls in four grassland ecosystems: application of a two-source model. Agricultural and Forest Meteorology, 149(9): 1410–1420.

    Article  Google Scholar 

  • Hu Z M, Li S G, Yu G R, et al. 2013. Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model. Journal of Hydrology, 501: 186–192.

    Article  Google Scholar 

  • Iritz Z, Lindroth A, Heikinheimo M, et al. 1999. Test of a modified Shuttleworth-Wallace estimate of boreal forest evaporation. Agricultural and Forest Meteorology, 98–99: 605–619.

    Article  Google Scholar 

  • Jung M, Reichstein M, Ciais P, et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318): 951–954.

    Article  Google Scholar 

  • Katerji N, Perrier A. 1983. A model of actual evapotranspiration (ETR) for a field of lucerne: the role of a crop coefficient. Agronomie, 3(6): 513–521.

    Article  Google Scholar 

  • Kato T, Kimura R, Kamichika M. 2004. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model. Agricultural Water Management, 65(3): 173–191.

    Article  Google Scholar 

  • Li X Y, Yang P L, Ren S M, et al. 2010. Modeling cherry orchard evapotranspiration based on an improved dual-source model. Agricultural Water Management, 98(1): 12–18.

    Article  Google Scholar 

  • Lohammar T, Larsson S, Linder S, et al. 1980. FAST: simulation models of gaseous exchange in Scots pine. In: Persson T. Structure and Function of Northern Coniferous Forests: An Ecosystem Study. Stockholm: Swedish Natural Science Council, 32: 505–523.

    Google Scholar 

  • Long D, Singh V P, Li Z L. 2011. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? Journal of Geophysical Research, 116(D21): D21107.

    Article  Google Scholar 

  • Lund M R, Soegaard H. 2003. Modelling of evaporation in a sparse millet crop using a two-source model including sensible heat advection within the canopy. Journal of Hydrology, 280(1–3): 124–144.

    Article  Google Scholar 

  • Mo X G. 1998. Modeling and validating water and energy transfer in soil-vegetation-atmosphere system. Acta Meteorological Sinica, 56(3): 323–332. (in Chinese)

    Google Scholar 

  • Monteith J L. 1965. Evaporation and environment. The state and movement of water in living organisms. Symposia of the Society for Experimental Biology. England: Cambridge University Press, 19: 205–234.

    Google Scholar 

  • Monteith J L, Unsworth M. 1990). Principles of Environmental Physics (2nd ed.). London: Butterworth-Heinemann, 286.

    Google Scholar 

  • Moran M S, Scott R L, Keefer T O, et al. 2009. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agricultural and Forest Meteorology, 149(1): 59–72.

    Article  Google Scholar 

  • Nichols W D. 1992. Energy budgets and resistances to energy transport in sparsely vegetated rangeland. Agricultural and Forest Meteorology, 60(3–3): 221–247.

    Article  Google Scholar 

  • Oki T, Kanae S. 2006. Global hydrological cycles and world water resources. Science, 313(5790): 1068–1072.

    Article  Google Scholar 

  • Ortega-Farias S, Olioso A, Antonioletti R, et al. 2004. Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration. Irrigation Science, 23(1): 1–9.

    Article  Google Scholar 

  • Ortega-Farias S, Olioso A, Fuentes S, et al. 2006. Latent heat flux over a furrow-irrigated tomato crop using Penman-Monteith equation with a variable surface canopy resistance. Agricultural Water Management, 82(3): 421–432.

    Article  Google Scholar 

  • Pereira L S, Perrier A, Allen R G, et al. 1999. Evapotranspiration: concepts and future trends. Journal of Irrigation and Drainage Engineering-ASCE, 125(2): 45–51.

    Article  Google Scholar 

  • Perrier A. 1975a. Physical study of evapotranspiration in natural conditions. I. Evaporation and summary of natural surface energy. Annales Agronomiques, 26: 1–18. (in French)

    Google Scholar 

  • Perrier A. 1975b. Physical study of evapotranspiration in natural conditions. III. Actural and potential evapotranspiration of canopies. Annales Agronomiques, 26: 229–243. (in French)

    Google Scholar 

  • Rana G, Katerji N, Mastrorilli M, et al. 1997a. A model for predicting actual evapotranspiration under soil water stress in a Mediterranean region. Theoretical and applied Climatology, 56(1–3): 45–55.

    Article  Google Scholar 

  • Rana G, Katerji N, Mastrorilli M, et al. 1997b. Validation of a model of actual evapotranspiration for water stressed soybeans. Agricultural and Forest Meteorology, 86(3–3): 215–224.

    Article  Google Scholar 

  • Scott R L, Huxman T E, Cable W L, et al. 2006. Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrological Processes, 20(15): 3227–3243.

    Article  Google Scholar 

  • Sene K J. 1994. Parameterisations for energy transfers from a sparse vine crop. Agricultural and Forest Meteorology, 71(1–2): 1–18.

    Article  Google Scholar 

  • Shi T T, Guan D X, Wang A Z, et al. 2008. Comparison of three models to estimate evapotranspiration for a temperate mixed forest. Hydrological Processes, 22(17): 3431–3443.

    Article  Google Scholar 

  • Shuttleworth W J, Wallace J S. 1985. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111(469): 839–855.

    Article  Google Scholar 

  • Shuttleworth W J, Gurney R J. 1990. The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Quarterly Journal of the Royal Meteorological Society, 116(492): 497–519.

    Article  Google Scholar 

  • Tanner C B, Jury W A. 1976. Estimating evaporation and transpiration from a row crop during incomplete cover. Agronomy Journal, 68(2): 209–243.

    Article  Google Scholar 

  • Teh C B S, Simmonds L P, Wheeler T R. 2001. Modelling the partitioning of solar radiation capture and evapotranspiration in intercropping systems. In: Proceedings of the 2nd International Conference on Tropical Climatology, Meteorology and Hydrology. TCMH-2001, Brussels, Belgium: TCMH.

    Google Scholar 

  • Tourula T, Heikinheimo M. 1998. Modelling evapotranspiration from a barley field over the growing season. Agricultural and Forest Meteorology, 91(3–3): 237–250.

    Article  Google Scholar 

  • Vickers D, Mahrt L. 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14(3): 512–526.

    Article  Google Scholar 

  • Villagarcía L, Were A, García M, et al. 2010. Sensitivity of a clumped model of evapotranspiration to surface resistance parameterisations: Application in a semi-arid environment. Agricultural and Forest Meteorology, 150(7–3): 1065–1078.

    Article  Google Scholar 

  • Wallace J S, Roberts J M, Sivakumar M V K. 1990. The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices. Agricultural and Forest Meteorology, 51(1): 35–49.

    Article  Google Scholar 

  • Williams D G, Cable W, Hultine K, et al. 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3–3): 241–258.

    Article  Google Scholar 

  • Yepez E A, Williams D G, Scott R L, et al. 2003. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agricultural and Forest Meteorology, 119(1–3): 53–68.

    Article  Google Scholar 

  • Yu G R, Sun X M. 2006. Principles of Flux Measurement in Terrestrial Ecosystems. Beijing: Higher Education Press, 137–142. (in Chinese)

    Google Scholar 

  • Zhan X, Kustas W P, Humes K S. 1996. An inter-comparison study on models of sensible heat flux over partial canopy surfaces with remotely sensed surface temperature. Remote Sensing of Environment, 58(3): 242–256.

    Article  Google Scholar 

  • Zhang B Z, Kang S Z, Li F S, et al. 2008. Comparison of three evapotranspiration models to Bowen ration-energy balance method for a vineyard in an arid desert region of northwest China. Agricultural and Forest Meteorology, 148(10): 1629–1640.

    Article  Google Scholar 

  • Zhang Y S, Munkhtsetseg E, Kadota T, et al. 2005. An observational study of ecohydrology of a sparse grassland at the edge of the Eurasian Cryosphere in Mongolia. Journal of Geophysical Research: Atmospheres, 110(D14), doi: 10.1029/2004jd005474.

  • Zhou M C, Ishidaira H, Hapuarachchi H P, et al. 2006. Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. Journal of Hydrology, 327(1–3): 151–173.

    Article  Google Scholar 

  • Zhu G F, Su Y H, Li X, et al. 2013. Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. Journal of Hydrology, 476: 42–51.

    Article  Google Scholar 

  • Zhu G F, Su Y H, Li X, et al. 2014a. Modelling evapotranspiration in an alpine grassland ecosystem on Qinghai-Tibetan plateau. Hydrological Process, 28(3): 610–619.

    Article  Google Scholar 

  • Zhu G F, Lu L, Su Y H, et al. 2014b. Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrological Processes, 28(19): 5093–5104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyou Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Zhang, X., Yu, T. et al. Comparison of three evapotranspiration models with eddy covariance measurements for a Populus euphratica Oliv. forest in an arid region of northwestern China. J. Arid Land 8, 146–156 (2016). https://doi.org/10.1007/s40333-015-0017-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-015-0017-0

Keywords

Navigation