Skip to main content
Log in

Statistical characterization of brittle and semi-brittle fault rocks: a clast geometry approach

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

In the present approach, clast geometric parameters—particle size distribution (PSD), clast complexity \((D^{R})\), aspect ratio (AR), circularity (Circ), convexity (Conv) and clast orientation (Angle)—were examined in order to separate the diverse fault rock types (fault breccias, cataclasites and fault gouges), which typically own extremely different hydraulic and petrophysical properties. The available borecore samples were studied in a case of a thrust fault zone from the metamorphic basement of the Pannonian Basin, Hungary. Multivariate statistical methods were applied in order to find the geometric parameters that define the tectonites. The calculated discriminant functions emphasized the importance of the PSD, Angle, AR, and Circ parameters, in descending order. We defined proper combinations of geometric parameters which can clearly separate the fault rock groups, both pair-wise and jointly for the three groups. The discriminant functions also pointed out the relatively similar geometric features of fault breccias and cataclasites in contrast to the significantly different characteristics of fault gouges. The multidimensional scaling demonstrated a three-phase evolution of the analysed brittle tectonites, where the initial deformation is coupled with chaotic fabric giving a weakly disaggregated fault breccia texture. The transitional stage can be characterised by cataclastic flow, while in the most deformed fault gouge samples the strong fragmentation, clast-rounding and oriented texture dominate. These results possible provide constraints on the development and overall behaviour of the fault zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antonellini M, Aydin A (1995) Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. Am Assoc Pet Geol Bull 79:642–671

    Google Scholar 

  • Barnett W (2004) Subsidence breccias in kimberlite pipes—an application of fractal analysis. Lithos 76:299–316

    Article  Google Scholar 

  • Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure Appl Geophys 160:677–715

    Article  Google Scholar 

  • Bérubé D, Jébrak M (1999) High precision boundary fractal analysis for shape characterization. Comput Geosci 25:1059–1071

    Article  Google Scholar 

  • Biegel RL, Sammis CG, Dieterich JH (1989) The frictional properties of a simulated gouge having a fractal particle distribution. J Struct Geol 11:827–846

    Article  Google Scholar 

  • Billi A (2007) On the extent of size range and power law scaling for particles on natural carbonate fault cores. J Struct Geol 20:1512–1521

    Article  Google Scholar 

  • Billi A, Storti F (2004) Fractal distribution of particle size in carbonate rocks from the core of a regional strike-slip fault zone. Tectonophysics 384:115–128

    Article  Google Scholar 

  • Billi A, Salvini F, Storti F (2003) The damage zone-fault core transition in carbonate rocks: implication for fault growth, structure and permeability. J Struct Geol 25:1779–1794

    Article  Google Scholar 

  • Bistacchi A, Massironi M, Menegon L (2010) Three-dimensional characterization of a crustal-scale fault zone: the Pusteria and Sprechenstein fault system (Eastern Alps). J Struct Geol 32:2022–2041

    Article  Google Scholar 

  • Blenkinsop TG (1991) Cataclasis and processes of particle size reduction. Pure Appl Geophys 136:59–86

    Article  Google Scholar 

  • Brodie K, Fettes D, Harte B (2007) Structural terms including fault rock terms. In: Fettes D, Desmonds J (eds) Metamorphic rocks: a classification and glossary of terms. Cambride University Press, Cambride, pp 24–31

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028

    Article  Google Scholar 

  • Cattell RB (1966) The scree test for the number of factors. Multivariate Behav Res 1:245–276

    Article  Google Scholar 

  • Chester FM, Friedman M, Logan JM (1985) Foliated cataclasites. Tectonophysics 111:139–146

    Article  Google Scholar 

  • Cladouhos TT (1999) Shape preferred orientations of survivor grains in fault gouge. J Struct Geol 21:419–436

    Article  Google Scholar 

  • Clark C, James P (2003) Hydrothermal brecciation due to fluid pressure fluctuations: examples from Olary Domain, South west Australia. Tectonophysics 366:187–206

    Article  Google Scholar 

  • Engelder JT (1974) Cataclasis and the generation of fault gouge. Geol Soc Am Bull 85:1515–1522

    Article  Google Scholar 

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks and implications for fault-zone hydraulic structure. J Struct Geol 19:1393–1404

    Article  Google Scholar 

  • Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575

    Article  Google Scholar 

  • Fossen H, Schultz RA, Shipton ZK, Mair K (2007) Deformation bands in sandstone: a review. J Geol Soc 164:755–769

    Article  Google Scholar 

  • Hausegger S, Kurz W, Rabitsch R, Kiechl E, Brosh FJ (2010) Analysis of the internal structure of a carbonate damage zone: implications for the mechanisms of fault breccia formation and fluid flow. J Geol Soc 32:1349–1362

    Google Scholar 

  • Hecht CA (2000) Appolonian packing and shape of grains improving geomechanical properties in engineering geology. Pure Appl Geophys 157:487–504

    Article  Google Scholar 

  • Heilbronner R, Keulen N (2006) Grain size an grain shape analysis of fault rocks. Tectonophysics 427:199–216

    Article  Google Scholar 

  • Hirono T, Sakaguchi M, Otsuki K, Sone H, Fujimoto K, Mishima T, Lin W, Tanikawa W, Tanimizu M, Soh W, Yeh E, Song S (2008) Characterization of slip zone associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and microstructural observations of the Taiwan Chelungpu fault. Tectonophysics 449:63–84

    Article  Google Scholar 

  • Jébrak M (1997) Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geol Rev 12:111–134

    Article  Google Scholar 

  • Jeppson TN, Bradbury KK, Evans JP (2010) Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. J Geophys Res 115:B12423. doi:10.1029/2010JB007563

  • Kaye BH (1989) A random walk through fractal dimension. VCH Publishers, New York

    Google Scholar 

  • Keulen N, Heilbronner R, Stünitz H, Boullier AM, Ito H (2007) Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. J Struct Geol 29:1282–1300

    Article  Google Scholar 

  • Lalonde M, Tremblay G, Jébrak M (2010) A Cellular Automata Breccia Simulator (CABS) and its application to rounding in hydrothermal breccias. Comput Geosci 36:827–838

    Article  Google Scholar 

  • Laznicka P (1988) Breccias and coarse fragmentites. Petrology, environments, associations, ores. Dev Econ Geol 25:842

  • Lee H, Kim H (2005) Comparison of structural features of the fault zone developed at different protoliths: crystalline rocks and mudrock. J Struct Geol 27:2099–2112

    Article  Google Scholar 

  • Lin A (1999) S-C cataclasite in granitic rock. Tectonophysics 304:257–273

    Article  Google Scholar 

  • Manzocchi T, Childs C, Walsh JJ (2010) Faults and fault properties in hydrocarbon flow models. Geofluids 10:94–113

  • Maros Gy, Pásztor Sz (2001) New and oriented core evaluation method: ImaGeo. Eur Geol 12:40–43

    Google Scholar 

  • Mort K, Woodcock NH (2008) Quantifying fault breccia geometry: Dent Fault, NW England. Journal of Structural Geology 30:701–709

    Article  Google Scholar 

  • Nelson RA (2001) Geologic analysis of naturally fractured reservoirs, 2nd edn. Gulf Publishing Company Book Division, Houston

    Google Scholar 

  • P’an CH (1982) Petroleum in basement rocks. Am Assoc Pet Geol Bull 66:1597–1643

    Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, New York

    Google Scholar 

  • Petford N, McCaffrey KJW (2003) Hydrocarbons in crystalline rocks. Geol Soc Spec Publ 214:1–5

    Article  Google Scholar 

  • Posgay K, Bodoky T, Hegedűs E, Kovácsvölgyi S, Lenkey L, Szafián P, Takács E, Timár Z, Varga G (1995) Asthenospheric structure beneath a Neogene basin in southeast Hungary. In: Cloetingh S, D’Argenio B, Catalano R, Horváth F, Sassi W (eds) Interplay of extension and compression in basin formation. Tectonophysics, vol 252, pp 467–484

  • Sammis CG, Osborne RH, Anderson JL, Banerdt M, White P (1986) Self-similar cataclasis in the formation of fault gouge. Pure Appl Geophys 124:54–77

    Article  Google Scholar 

  • Sammis CG, King G, Biegel R (1987) The kinematics of gouge deformation. Pure Appl Geophys 125:777–812

    Article  Google Scholar 

  • Schubert F, Diamond LW, Tóth MT (2007) Fluid-inclusion evidence of petroleum migration through a buried metamorphic dome in the Pannonian Basin, Hungary. Chem Geol 244:357–381

    Article  Google Scholar 

  • Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc 133:191–213

    Article  Google Scholar 

  • Sibson RH (1986) Brecciation processes in fault zones: inferences from earthquake rupturing. Pure Appl Geophys 124:159–174

    Article  Google Scholar 

  • Storti F, Balsamo F (2010) Impact of ephemeral cataclastic fabrics on laser diffraction particle size distribution analysis in loose carbonate fault breccia. J Struct Geol 32:507–522

    Article  Google Scholar 

  • Storti F, Billi A, Salvini F (2003) Particle size distributions in natural carbonate fault rocks: insights for non-self similar cataclasis. Earth Planet Sci Lett 206:173–186

    Article  Google Scholar 

  • Storti F, Balsamo F, Salvini F (2007) Particle shape evolution in natural carbonate granular wear material. Terra Nova 19:344–352

    Article  Google Scholar 

  • Stünitz H, Keulen N, Hirose T, Heilbronner R (2010) Grain size distribution and microstructures of experimentally sheared granitoid gouge at coseismic slip rates—crtieria to distinguish seismic and aseismic faults? J Struct Geol 32:59–69

    Article  Google Scholar 

  • Tanaka H (1992) Cataclastic lineations. J Struct Geol 14:1239–1252

    Article  Google Scholar 

  • Tari G, Dövényi P, Dunkl I, Horváth F, Lenkey L, Stefanescu M, Szafián P, Tóth T (1999) Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean basins: tertiary extension within the Alpine orogen. Special Publications, vol 156. Geological Society, London, pp 215–250

    Google Scholar 

  • Tóth MT (2008) Repedezett, metamorf fluidumtárolók az Alföld aljzatában. Academic Doctoral Thesis (in Hungarian)

  • Tóth MT, Redlerné TM, Kummer I (2009) Structural evolution of Szeghalom Dome on the basis of petrological and seismic data. Hung Geophys 29:143–151 (in Hungarian with English abstract)

    Google Scholar 

  • Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91:1921–1926

    Article  Google Scholar 

  • Wibberley CAJ, Shimamoto T (2003) Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. J Struct Geol 25:59–78

    Article  Google Scholar 

  • Woodcock NH, Mort K (2008) Classification of fault breccias and related fault rocks. Geol Mag 145:435–440

    Google Scholar 

Download references

Acknowledgments

We thank MOL Hungarian Oil and Gas Company for providing the samples and the financial support of this research. We are grateful to Gyula Maros (Hungarian Geological and Geophysical Institute) for his help in the use of ImaGeo corescanner. English was corrected by Proof-Reading-Service.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Molnár.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnár, L., Tóth, T.M. & Schubert, F. Statistical characterization of brittle and semi-brittle fault rocks: a clast geometry approach. Acta Geod Geophys 49, 527–550 (2014). https://doi.org/10.1007/s40328-014-0067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-014-0067-3

Keywords

Navigation