Skip to main content
Log in

Ball convergence for an eighth order efficient method under weak conditions in Banach spaces

  • Published:
SeMA Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a local convergence analysis of an eighth order- iterative method in order to approximate a locally unique solution of an equation in Banach space setting. Earlier studies have used hypotheses up to the fourth derivative although only the first derivative appears in the definition of these methods. In this study we only use the hypothesis on the first derivative. This way we expand the applicability of these methods. Moreover, we provide a radius of convergence, a uniqueness ball and computable error bounds based on Lipschitz constants. Numerical examples computing the radii of the convergence balls as well as examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad, M.F., Cordero, A., Torregrosa, J.R.: Fourth and Fifth-order methods for solving nonlinear systems of equations: an application to the global positioning system abstract and applied analysis (2013)

  2. Amat, S., Hernández, M.A., Romero, N.: Semilocal convergence of a sixth order iterative method for quadratic equations. Appl. Numer. Math. 62, 833–841 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Series: studies in computational mathematics, 15. Elsevier, New York (2007)

  4. Argyros, I.K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80, 327–343 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newton’s method. J. Complex. 28, 364–387 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. Efficient Algorithms, Fixed Point Theory and Applications. World Scientific (2013)

  7. Aryros, I.K., Ren, H.: Improved local analysis for certain class of iterative methods with cubic convergence. Numer Algorithm 59, 505–521 (2012)

    Article  MathSciNet  Google Scholar 

  8. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: The Halley method. Computing 44, 169–184 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 45(4), 355–367 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chun, C., Stănică, P., Neta, B.: Third-order family of methods in Banach spaces. Comput. Math. Appl. 61, 1665–1675 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cordero, A., Martinez, F., Torregrosa, J.R.: Iterative methods of order four and five for systems of nonlinear equations. J. Comput. Appl. Math. 231, 541–551 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cordero, A., Hueso, J., Martinez, E., Torregrosa, J.R.: A modified Newton–Tarratt’s composition. Numer. Algor. 55, 87–99 (2010)

    Article  MATH  Google Scholar 

  13. Cordero, A., Torregrosa, J.R., Vasileva, M.P.: Increasing the order of convergence of iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 252, 86–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ezzati, R., Azandegan, E.: A simple iterative method with fifth order convergence by using Potra and Ptak’s method. Math. Sci. 3(2), 191–200 (2009)

    MATH  Google Scholar 

  15. Gutiérrez, J.M., Magren̄án, A.A., Romero, N.: On the semi-local convergence of Newton–Kantorovich method under center-Lipschitz conditions. Appl. Math. Comput. 221, 79–88 (2013)

    MathSciNet  Google Scholar 

  16. Hasanov, V.I., Ivanov, I.G., Nebzhibov, F.: A new modification of Newton’s method. Appl. Math. Eng. 27, 278–286 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Hernández, M.A., Salanova, M.A.: Modification of the Kantorovich assumptions for semi-local convergence of the Chebyshev method. J. Comput. Appl. Math. 126, 131–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jaiswal, J.P.: Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numer. Algor. 71, 933–951 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  20. Kou, J.S., Li, Y.T., Wang, X.H.: A modification of Newton method with third-order convergence. Appl. Math. Comput. 181, 1106–1111 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Magrenan, A.A.: Different anomalies in a Jarratt family of iterative root finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Magrenan, A.A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 29–38 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Petkovic, M.S., Neta, B., Petkovic, L., Džunič, J.: Multipoint methods for solving nonlinear equations. Elsevier, New York (2013)

  24. Potra, F.A., Pták, V.: Nondiscrete induction and iterative processes. In: Research Notes in Mathematics, vol. 103. Pitman, Boston (1984)

  25. Ren, H., Wu, Q.: Convergence ball and error analysis of a family of iterative methods with cubic convergence. Appl. Math. Comput. 209, 369–378 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. In: Tikhonov, A.N. et al. (eds.) Mathematical Models and Numerical Methods, pub.3, pp. 129–142. Banach Center, Warsaw (1977)

  27. Sharma, J.R., Guha, P.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62(2), 307–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Traub, J.F.: Iterative methods for the solution of equations. AMS Chelsea Publishing (1982)

  29. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhanlar, T., Chulunbaatar, O., Ankhbayar, G.: On Newton-type methods with fourth and fifth-order convergence. Bull. PFUR Ser. Math. Inf. Sci. Phys. 2(2), 29–34 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobha M. Erappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., George, S. & Erappa, S.M. Ball convergence for an eighth order efficient method under weak conditions in Banach spaces. SeMA 74, 513–521 (2017). https://doi.org/10.1007/s40324-016-0098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-016-0098-5

Keywords

Mathematics Subject Classification

Navigation