Skip to main content
Log in

Sinc-Galerkin solution to the clamped plate eigenvalue problem

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

We propose an accurate and computationally efficient numerical technique for solving the biharmonic eigenvalue problem. The technique is based on the sinc-Galerkin approximation method to solve the clamped plate problem. Numerical experiments for plates with various aspect ratios are reported, and comparisons are made with other methods in literature. The calculated results accord well with those published earlier, which proves the accuracy and validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bardell, N.S., Dunsdon, J.M., Langley, R.S.: Free vibration of coplanar sandwich panels. Compos. Struct. 38, 463–475 (1997)

    Article  Google Scholar 

  2. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of non-linear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MATH  Google Scholar 

  3. Bellomo, N., Ridolfi, L.: Solution of nonlinear initial -boundary value problems by sinc-collocation-interpolation methods. Comput. Math. Appl. 29, 15–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bialecki, B.: Sinc-collocation methods for two-point boundary value problems. IMA J. Numer. Anal. 11, 357–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bjørstad, P.E., Tjøstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63, 97–107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits of vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chakraverty, S., Pradhan, K.K.: Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp. Sci. Technol. 36, 132–156 (2014)

    Article  Google Scholar 

  9. Chen, W., Zhong, T.X.: A note on the DQ analysis of anisotropic plates. J. Sound Vib. 204, 180–182 (1997)

    Article  Google Scholar 

  10. Cheung, Y.K., Chen, W.J.: Hybrid quadrilateral element based on Mindlin/Reissner plate theory. Comput. Struct. 32, 327–339 (1989)

    Article  MATH  Google Scholar 

  11. Chia, C.Y.: Non-linear vibration of anisotropic rectangular plates with non-uniform edge constraints. J. Sound Vib. 101, 539–550 (1985)

    Article  Google Scholar 

  12. Cook, T.: Comparison of finite difference, spectral and sinc biharmonic operators. M.sc thesis, University of Utah (2004)

  13. Donning, B.M., Liu, W.K.: Meshless methods for shear-deformable beams and plates. Comput. Methods Appl. Mech. Eng. 152, 47–71 (1998)

    Article  MATH  Google Scholar 

  14. El-Gamel, M.: Sinc-collocation method for solving linear and nonlinear system of second-order boundary value problems. Appl. Math. 3, 1627–1633 (2012)

    Article  Google Scholar 

  15. El-Gamel, M.: Numerical solution of Troesch’s problem by sinc-collocation method. Appl. Math. 4, 707–712 (2013)

    Article  Google Scholar 

  16. El-Gamel, M., Behiry, S., Hashish, H.: Numerical method for the solution of special nonlinear fourth-order boundary value problems. Appl. Math. Comp. 145, 717–734 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. El-Gamel, M., Cannon, J.R., Zayed, A.: Sinc-galerkin method for solving linear sixth order boundary-value problems. Math. Comp. 73, 1325–1343 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. El-Gamel, M., Mohsen, A., El-Mohsen, A.A.: Sinc-Galerkin method for solving biharmonic problems. Appl. Math. Comp. 247, 386–396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan, S.C., Cheung, Y.K.: Flexural free vibrations of rectangular plates with complex support conditions. J. Sound Vib. 93, 81–94 (1984)

    Article  Google Scholar 

  20. Geannakakes, G.N.: Natural frequencies of arbitrarily shaped plates using the Rayleigh–Ritz method together with natural co-ordinate regions and normalized characteristic polynomials. J. Sound Vib. 182, 441–478 (1995)

    Article  Google Scholar 

  21. Gavalas, G., El-Raheb, M.: Extension of Rayleigh–Ritz method for eigenvalue problems with discontinuous boundary conditions applied to vibration of rectangular plates. J. Sound Vib. 333, 4007–4016 (2014)

    Article  Google Scholar 

  22. Gorman, D.J.: Free Vibration Analysis of Rectangular Plates. Elsevier, New York (1982)

    MATH  Google Scholar 

  23. Gorman, D.J.: An exact analytical approach to the free vibration analysis of rectangular plates with mixed boundary conditions. J. Sound Vib. 93, 235–247 (1984)

    Article  MATH  Google Scholar 

  24. Gorman, D.J., Yu, S.D.: A review of the superposition method for computing free vibration eigenvalues of elastic structures. Comput. Struct. 104, 27–37 (2012)

    Article  Google Scholar 

  25. Grenander, V., Szego, G.: Toeplitz Forms and Their Applications, 2nd edn. Chelsea Publishing Co, Orlando (1985)

    MATH  Google Scholar 

  26. Keer, L.M., Stahl, B.: Eigenvalue problems of rectangular plates with mixed edge conditions. J. Appl. Mech. 39, 513–520 (1972)

    Article  MATH  Google Scholar 

  27. Leipholz, H.H.E.: On some developments in direct methods of the calculus of variations. Appl. Mech. Rev. 40, 1379–1392 (1987)

    Article  Google Scholar 

  28. Leissa, A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257–293 (1973)

    Article  MATH  Google Scholar 

  29. Liew, K.M., Hung, K.C., Lam, K.Y.: On the use of the substructure method for vibration analysis of rectangular plates with discontinuous boundary conditions. J. Sound Vib. 163, 451–462 (1993)

    Article  MATH  Google Scholar 

  30. Liew, K.M., Xiang, Y., Kitipornchai, S.: Transverse vibration of thick rectangular plates-I. compressive sets of boundary conditions. Comput. Struct. 49, 1–29 (1993)

    Article  Google Scholar 

  31. Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  32. McArthur, K., Bowers, K., Lund, J.: The sinc method in multiple space dimensions: model problems. Numer. Math. 56, 789–816 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohsen, A., El-Gamel, M.: A sinc-collocation method for the linear Fredholm integro-differential equations. Z. Angew. Math. Phys. 58, 380–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mohsen, A., El-Gamel, M.: On the Galerkin and collocation methods for two-point boundary value problems using sinc bases. Comput. Math. Appl. 56, 930–941 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mohsen, A., El-Gamel, M.: On the numerical solution of linear and nonlinear Volterra integral and integro-differential equations. Appl. Math. Comput. 217, 3330–3337 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Neudecker, H.: A note on Kronecker matrix products and matrix equation systems. SIAM J. Appl. Math. 17, 603–606 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nowacki, W.: Free vibrations and buckling of a rectangular plate with discontinuous boundary conditions. Bull. Acad. Pol. Sci. Biol. 3, 159–167 (1955)

    MATH  Google Scholar 

  38. Ota, T., Hamada, M.: Fundamental frequencies of simply supported but partially clamped square plates. Bull. Jpn. Soc. Mech. Eng. 6, 397–403 (1963)

    Article  Google Scholar 

  39. Piskunov, V.H.: Determination of the frequencies of the natural oscillations of rectangular plates with mixed boundary conditions. Prikl. Mekh. 10, 72–76 (1964). (in Ukrainian)

    Google Scholar 

  40. Ralph, C., Bowers, K.: The sinc-Galerkin method for fourth-order differential equations. SIAM J. Numer. Anal. 28, 760–788 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve twodimensional incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 15, 791–798 (1992)

    Article  MATH  Google Scholar 

  42. Sidi, Avram: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl. Math. 36, 305–337 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  44. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-hill, New York (1959)

    MATH  Google Scholar 

  45. Žitňan, P.: Vibration analysis of membranes and plates by a discrete least squares technique. J. Sound Vib. 4, 595–605 (1996)

    Google Scholar 

  46. Wieners, C.: Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing 59, 29–41 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yin, G.: Sinc-collocation method with orthogonalization for singular problem-like Poisson. Math. Comput. 62, 21–40 (1994)

    Article  MATH  Google Scholar 

  48. Young, D.: Vibration of rectangular plates by the Ritz method. Trans. Am. Soc. Mech. Eng. J. Appl. Mech. 17, 448–453 (1950)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewer for carefully reading this paper and for his many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El-Gamel.

Appendix 1: Proof of Theorem 3.1

Appendix 1: Proof of Theorem 3.1

For \(U_{xxxx}\), the inner product with sinc basis element is given by

$$\begin{aligned} \left<\Phi ^{4} U_{xxxx},S_k S_l\right>=\Phi ^{4} \int _{0}^1 \int _0^1 U_{xxxx}(x,y)S_k(x)S_l(y)w(x)v(y)dx dy. \end{aligned}$$

Integrating by parts to remove the fourth order derivatives from the dependent variable U leads to the equality.

$$\begin{aligned} \left<\Phi ^{4} U_{xxxx},S_k S_l\right>= B_{x}+\Phi ^{4} \int _{0}^1 \int _0^1 U(x,y)\left[ S_k(x)S_l(y)w(x)v(y)\right] _{xxxx}dx dy. \end{aligned}$$
(5.1)

where the boundary term is

$$\begin{aligned} B_x=\Phi ^{4} \int _0^1\left[ U_{xxx}(S_kS_lwv)-U_{xx}(S_kS_lwv)_x +U_x(S_kS_lwv)_{xx}-U(S_kS_lwv)_{xxx}\right] _0^1 dy. \end{aligned}$$

The boundary terms in Eq. (5.1) vanished. Continuing only with the remaining integral in (5.1) and expanding the derivative results in

$$\begin{aligned} \left<\Phi ^{4} U_{xxxx},S_k S_l\right>=\Phi ^{4} \int _{0}^1 \int _0^1 \sum _{i=0}^4U(x,y)\left[ S_k^{(i)}\mu _i\right] S_l v(y) dx dy. \end{aligned}$$
(5.2)

where \(S_k^{(i)}\) denotes the ith derivative of \(S_k\) with respect to the \(\phi _1\) and

$$\begin{aligned} \mu _4= & {} (\phi _1')^{4}w, \\ \mu _3= & {} 6(\phi '_1)^2\phi ''_1w+4(\phi '_1)^3w', \\ \mu _2= & {} 3(\phi ''_1)^2w+4\phi '_1\phi '''_1w+12\phi _1'\phi _1''w'+6(\phi _1')^2w'', \\ \mu _1= & {} \phi _1''''w+4\phi _1'''w'+6\phi _1''w''+4\phi _1'w'''. \end{aligned}$$

and

$$\begin{aligned} \mu _0=w'''' \end{aligned}$$

Applying the sinc quadrature in the x-domain and y-domain to Eq. (5.2) yields Eq. (3.10).

The inner product for \(U_{yyyy}\) may be handled in a similar manner. This gives the expression (3.11) where

$$\begin{aligned} \eta _4= & {} (\phi _2')^{4}v, \\ \eta _3= & {} 6(\phi '_2)^2\phi ''_2v+4(\phi '_2)^3v', \\ \eta _2= & {} 3(\phi ''_2)^2v+4\phi '_2\phi '''_2v+12\phi _2'\phi _2''v'+6(\phi _2')^2v'', \\ \eta _1= & {} \phi _2''''v+4\phi _2'''v'+6\phi _2''v''+4\phi _2'v'''. \end{aligned}$$

and

$$\begin{aligned} \eta _0=v'''' \end{aligned}$$

For \(U_{xxyy}\), the inner product with sinc basis element is given by

$$\begin{aligned} \left<2\,\Phi ^{2} u_{xxyy},S_k\, S_l\right>=2\,\Phi ^{2} \int _{0}^1 \int _0^1 \,U_{xxyy}(x,y)\,S_k(x)\,S_l(y)\,w(x)\,v(y)\,dx \,dy. \end{aligned}$$

Integrating by parts to remove the fourth derivatives from the dependent variable U leads to the equality

$$\begin{aligned} \left<2\,\Phi ^{2} U_{xxyy},S_k \,S_l\right> = B_{xy}+ \Phi ^{2} \int _{0}^1 \int _0^1 U(x,y)\,\left[ 2\,S_k(x)\,S_l(y)\,w(x)\,v(y)\right] _{xxyy}\,dx\, dy. \end{aligned}$$
(5.3)

where the boundary term is

$$\begin{aligned} B_{xy}= & {} \Phi ^{2}\int _0^1\left[ U_{xyy}(S_k\,S_l\,w\,v)-U_{yy}(S_k\,S_l\,w\,v)_x\right] _0^1 dy \\&+ \; \int _0^1\left[ U_{y}(S_k\,S_l\,w\,v)_{xx}- U(S_k\,S_l\,w\,v)_{xxy}\right] _0^1 dx=0 \end{aligned}$$

Continuing with the remaining integral in (5.3) and expanding the derivative result in

$$\begin{aligned} \left<2\,\Phi ^{2} U_{xxyy},S_k S_l\right>=2\,\Phi ^{2} \int _{0}^1\int _0^1 \sum _{r=0}^2\,\,\sum _{p=0}^2\,\,U(x,y)S_k^{(r)}\,S_l^{(p)}\,\,\tau _r\,\xi _p\, \,dx\, dy. \end{aligned}$$
(5.4)

where

$$\begin{aligned} \tau _2=(\phi _1')^2\,w,\quad \tau _1=2\phi _1'w'+\phi _1''w,\quad \tau _0=w'', \end{aligned}$$

and

$$\begin{aligned} \xi _2=(\phi _2')^2v,\quad \xi _1=2\phi _2'v'+\phi _2''v,\quad \xi _0=v'' \end{aligned}$$

Applying the sinc quadrature in the x-domain and y-domain to the Eq. (5.4) yields Eq. (3.12).

For \(\Phi ^{4} \lambda ^2 U(x,y)\), the inner product is

$$\begin{aligned} \left<\Phi ^{4} \lambda ^2 U ,S_k S_l\right>=\Phi ^{4} \int _0^1\int _0^1 \lambda ^2 U(x,y)S_k S_lw(x)v(y)dx dy \end{aligned}$$
(5.5)

Applying the sinc quadrature to (5.5) yields

$$\begin{aligned} \left<\Phi ^{4} \lambda ^2 U ,S_k S_l\right>\approx \Phi ^{4} \lambda ^2 h_x h_y\frac{w(x_k)U(x_k,y_l)v(y_l)}{\phi _1'(x_k)\phi _2'(y_l)} \end{aligned}$$
(5.6)

as given in Eq. (3.13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gamel, M., Mohsen, A. & Abdrabou, A. Sinc-Galerkin solution to the clamped plate eigenvalue problem. SeMA 74, 165–180 (2017). https://doi.org/10.1007/s40324-016-0086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-016-0086-9

Keywords

Mathematics Subject Classification

Navigation