Skip to main content
Log in

Local convergence for multipoint methods using only the first derivative

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

We present a local convergence analysis of two methods in order to approximate a locally unique solution of an equation in a Banach space setting. Earlier studies have shown convergence using Taylor expansions and hypotheses reaching up to the sixth derivative (or even higher order derivatives) although only the first derivative appears in these methods. We only show convergence using hypotheses on the first derivative. We also provide computable: error bounds, radii of convergence as well as uniqueness results for the solution based on Lipschitz constants not given in earlier studies. The computational order of convergence is also used to determine the order of convergence. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasbandy, S., Bakhtiari, P., Cordero, A., Torregrosa, J.R., Lofti, T.: New efficient methods for solving nonlinear systems of equations with arbitrary even order. Appl. Math. Comput. (2016) (to appear)

  2. Adomian, G.: Solving Frontier Problem of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrechet (1994)

    Book  MATH  Google Scholar 

  3. Amat, S., Busquier, S., Guttiérrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King’s and Jarratt iterations. Aequationes. Math. 69, 212–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164–174 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Argyros, I.K.: Improved generalized differentiability conditions for Newton-like methods. J. Complexity 26, 316–333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Argyros, I.K.: Quadratic equations annd applications to Chandershekhar’s and related equations. Bull Austra. Math. Soc. 32, 275–292 (1985)

    Article  Google Scholar 

  9. Argyros, I.K., Chen, D., Quian, Q.: The Jarratt method in Banach space setting. J. Comput. Appl. Math. 51, 103–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. World Scientific Publishing Company, New Jersey (2013)

    Book  MATH  Google Scholar 

  11. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Increasing the order of convergence of iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 252, 86–94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer Math. 49, 325–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ezquerro, J.A., Hernández, M.A.: A uniparametric halley type iteration with free second derivative. Int. J. Pure and Appl. Math. 6(1), 99–110 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36, 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jarratt, P.: Some fourth order multipoint methods for solving equations. Math. Comput. 20, 434–437 (1966)

    Article  MATH  Google Scholar 

  17. Petković, M.S., Neta, B., Petković, L.D., Dzunić, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  18. Potra, F.A., Pták, V.: Nondiscrete introduction and iterative processes. Res. Notes Math. 103. Pitman, Boston (1984)

  19. Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. In: Tikhonov, A.N., et al. (eds.) Mathematical Models and Numerical Methods 3 (19), 1977, pp. 129–142 Banach center, Warsaw

  20. Sharma, J.R., Guha, R.K., Sharma, R.: An efficient fourth-order weighted-Newton method for systems of nonlinear equations. Numer. Algorithm 62, 307–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, New Jersey (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Kansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Kansal, M. & Kanwar, V. Local convergence for multipoint methods using only the first derivative . SeMA 73, 369–378 (2016). https://doi.org/10.1007/s40324-016-0075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-016-0075-z

Keywords

Mathematics Subject Classification

Navigation