Skip to main content
Log in

Solution of nonlinear fractional diffusion-wave equation by traingular functions

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, we propose new technique for solving fractional diffusion-wave equation. This algorithm is based on Triangular Function (TFs) methods, a new fractional operational matrix of integration for the TFs is derived. The TFs and their fractional operational matrix of integration are used to transform the problem under consideration into a linear system of algebraic equations. The new technique is applied to solving two mathematical models. We show that the present approach is relatively easy, efficient and highly accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aslefallah, M., Shivanian, E.: Nonlinear fractional integro-differential reaction–diffusion equation via radial basis functions. Eur. Phys. J. Plus 47, 1–9 (2015)

    Google Scholar 

  2. Babolian, E., Masouri, Z., Hatamzadeh-Varmazyar, S.: Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular functions. Comput. Math. Appl. 58, 239–247 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benson, D.A., Wheatcraft, S.W.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  Google Scholar 

  4. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. (in press)

  5. Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, 1737–1748 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deb, A., Dasgupta, A., Sarkar, G.: A new set of orthogonal functions and its application to the analysis of dynamic systems. J. Franklin Inst. 343, 1–26 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deng, W., Li, C., Guo, Q.: Analysis of fractional differential equations with multi-orders. Fractals 15, 173–182 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ebadian, A., Khajehnasiri, A.A.: Block-pulse functions and their applications to solving systems of higher-order nonlinear Volterra integro-differential equations. Electron. J. Differ. Equ. 54, 1–9 (2014)

    MathSciNet  Google Scholar 

  10. Ebadian, A., Khajehnasiri, A.A.: Numerical solution of nonlinear fractional-order integro-differential equation by triangular functions. TWMS J. Pure Appl. Math. (in press)

  11. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Bound. Elem. 38, 381–390 (2014)

    Article  MathSciNet  Google Scholar 

  12. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Local integration of 2-D fractional telegraph equation via local radial point intepolat approximation. Eur. phys. J. Plus 33, 130–141 (2015)

    Google Scholar 

  13. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A. 287, 468–481 (2000)

    Article  Google Scholar 

  15. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Metler, R., Klafter, J.: The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  20. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and return in high-frequency financial data: an empirical study. Phys. A. 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  21. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl 59, 1326–1336 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 73, 850–872 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Solomon, T.H., Weeks, E.R., Swinney, H.L.: Observations of anomalous diffusion and Levy flights in a 2-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3979 (1993)

    Article  Google Scholar 

  24. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  25. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhanga, W., Lia, J., Yang, Y.: A fractional diffusion-wave equation with non-local regularization for image denoising. Signal Process. 103, 6–15 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khajehnasiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadian, A., Fazli, H.R. & Khajehnasiri, A.A. Solution of nonlinear fractional diffusion-wave equation by traingular functions. SeMA 72, 37–46 (2015). https://doi.org/10.1007/s40324-015-0045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-015-0045-x

Keywords

Mathematics Subject Classification

Navigation