Skip to main content
Log in

Fourier Transforms of Positive Definite Kernels and the Riemann \(\xi \)-Function

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the distribution of zeros of entire functions which can be represented as the Fourier transforms of certain admissible kernels. The principal results bring to light the intimate connection between the Bochner–Khinchin–Mathias theory of positive definite kernels and the generalized real Laguerre inequalities. The concavity and convexity properties of the Jacobi theta function play a prominent role throughout this work. The paper concludes with several questions and open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochner, S.: Vorlesungen über Fouriersche Integrale. Akademische Verlagsgesellschaft, Leipzig (1932)

  2. Cardon, D.A.: Extended Laguerre Inequalities and a Criterion for Real Zeros, Progress in Analysis and its Applications. World Science Publishers, Hackensack (2010)

    Google Scholar 

  3. Cartwright, M.L.: The zeros of certain integral functions. Q. J. Math. 1, 38–59 (1930)

    Article  MATH  Google Scholar 

  4. Coffey, M.W., Csordas, G.: On the log-concavity of a Jacobi theta function. Math. Comput. 82, 2265–2272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Craven, T., Csordas, G.: Iterated Laguerre and Turán inequalities. JIPAM J. Inequal. Pure Appl. Math. 3, Article 39, pp. 14 (2002)

  6. Craven, T., Csordas, G.: On a converse of Laguerre’s theorem. Electron. Trans. Numer. Anal. 5, 7–17 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Craven, T., Csordas, G.: Jensen polynomials and the Turán and Laguerre inequalities. Pacif. J. Math. 136, 241–260 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Craven, T., Csordas, G.: Differential operators of infinite order and the distribution of zeros of entire functions. J. Math. Anal. Appl. 186, 799–820 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Craven, T., Csordas, G., Smith, W.: The zeros of derivatives of entire functions and the Pólya–Wiman conjecture. Ann. Math. 125, 405–431 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Csordas, G.: Convexity and the Riemann \(\xi \)-function. Glas. Mat. Ser. III 33(53), 37–50 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Csordas, G.: Linear operators and the distribution of zeros of entire functions. Complex Var. Elliptic Equ. 51, 625–632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Csordas, G.: The Laguerre inequalities and the zeros of the Riemann \(\xi \)-function. Complex Var. Elliptic Equ. 56, 49–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Csordas, G., Dimitrov, D.K.: Conjectures and theorems in the theory of entire functions. Numer. Algorithms 25, 109–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Csordas, G., Escassut, A.: The Laguerre inequality and the distribution of zeros of entire functions. Ann. Math. Blaise Pascal 12, 331–345 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Csordas, G., Norfolk, T.S., Varga, R.S.: The Riemann hypothesis and the Turán inequalities. Trans. Am. Math. Soc. 296, 521–541 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Csordas, G., Smith, W., Odlyzko, A.M., Varga, R.S.: A new Lehmer pair of zeros and a new lower bound for the de Bruijn–Newman constant \(\Lambda \). Electron. Trans. Numer. Anal. 1, 104–111 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Csordas, G., Smith, W., Varga, R.S.: Lehmer pairs of zeros and the Riemann \(\xi \)- function. Mathematics of Computation 1943–1993: a half-century of computational mathematics (Vancouver, BC, 1993). In: Proceedings of the Sympososium of Application Mathematics, 553–556. 48 American Mathematical Society, Providence (1994)

  18. Csordas, G., Norfolk, T.S., Varga, R.S.: A lower bound for the de Bruijn-Newman constant \(\Lambda \). Numer. Math. Soc. 52, 483–497 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Csordas, G., Varga, R.S.: Necessary and sufficient conditions and the Riemann hypothesis. Adv. Appl. Math. 1, 328–357 (1990)

    Article  MathSciNet  Google Scholar 

  20. Csordas, G., Varga, R.S.: Moment inequalities and the Riemann hypothesis. Constr. Approx. 4, 175–198 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Csordas, G., Ruttan, A., Varga, R.S.: The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis. Numer. Algorithms I, 305–330 (1991)

    Article  MathSciNet  Google Scholar 

  22. Csordas, G., Smith, W., Varga, R.S.: Lehmer pairs of zeros, the de Bruijn-Newman constant \(\Lambda \), and the Riemann hypothesis. Constr. Approx. 10, 107–129 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Csordas, G., Yang, C.-C.: Finite Fourier transforms and the zeros of the Riemann \(\xi \)- function. II (2009). In: Proceedings of the 5th International ISAAC Congress, Catania, Italy, July 25–30, pp. 1295–1302. World Scientific, Hackensack (2005)

  24. Csordas, G., Vishnyakova, A.: The generalized Laguerre inequalities and functions in the Laguerre–Pólya class. Cent. Eur. J. Math. 11, 1643–1650 (2013)

    MathSciNet  MATH  Google Scholar 

  25. de Bruijn, N.G.: The roots of trigonometric integrals. Duke Math. J. 7, 197–226 (1950)

    Article  Google Scholar 

  26. Dilcher, K., Stolarsky, K.B.: On a class of nonlinear operators acting on polynomials. J. Math. Anal. Appl. 170, 382–400 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dimitrov, D.K.: Higher order Turán inequalities. Proc. Am. Math. Soc. 139, 1013–1022 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dimitrov, D.K.: Higher order Turán inequalities. Proc. Am. Math. Soc. 126, 2033–2037 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dimitrov, D.K., Lucas, F.R.: Higher order Turán inequalities for the Riemann \(\xi \)- function. Proc. Am. Math. Soc. 126, 2033–2037 (1998)

    Article  MATH  Google Scholar 

  30. Ivić, A.: The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications. Wiley, New York (1985)

    MATH  Google Scholar 

  31. Jensen, J.L.W.V.: Reserches sur la théorie des équations. Acta Math. 36, 181–195 (1913)

    Article  MathSciNet  Google Scholar 

  32. Katkova, O.M.: Multiple positivity and the Riemann zeta-function. Comput. Methods Funct. Theory 7, 13–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Khinchin, A.: Zur Kennzeichnung der charakteristischen Funktionen. ull. Univ. Etat Moscou Ser. Int. Sect. A Math. et Mecan. Fasc. 5 1, 1–3 (1937)

  34. Kawata, T.: Fourier Analysis in Probability Theory. Probability and Mathematical Statistics. No. 15 Academic Press, New York, London (1972)

    Google Scholar 

  35. Ki, H., Kim, Y.-O.: On the number of nonreal zeros of real entire functions and the Fourier–Pólya conjecture. Duke Math. J. 104, 45–73 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ki, H., Kim, Y.-O.: De Bruijn’s question on the zeros of Fourier transforms. J. Anal. Math. 91, 369–387 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ki, H., Kim, Y.-O., Lee, J.: On the de Bruijn–Newman constant. Adv. Math. 222, 281–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Levin, B.J.: Distribution of Zeros of Entire Functions. Translation of Mathematical Monographs, vol. 5. American Mathematical Society, Providence (1964) (revised ed. 1980)

  39. Lukacs, E.: Characteristic Functions, 2nd edn. Hafner Publishing Co, New York (1970)

    MATH  Google Scholar 

  40. Marden, M.: Geometry of Polynomials. Mathematical Surveys no. 3. American Mathematical Society, Providence (1966)

  41. Mathias, M.: Über positive Fourier-Integrale. Math. Z. 16, 103–125 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  42. Newman, C.M.: Fourier transforms with only real zeros. Proc. Am. Math. Soc. 61, 245–251 (1976)

    Article  Google Scholar 

  43. Newman, C.M.: The GHS: inequality and the Riemann hypothesis. Constr. Approx. 7, 389–399 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nuttall, J.: Wronskians, cumulants, and the Riemann hypothesis. Constr. Approx. 38, 193–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag der Wissenschaften, Berlin (1963)

    MATH  Google Scholar 

  46. Patrick, M.: Extensions of inequalities of the Laguerre and Turán type. Pac. J. Math. 44, 675–682 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pólya, G.: Remarks on characteristic functions. In: Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, pp. 115–123. University of California Press, Berkeley (1949)

  48. Pólya, G.: Über die algebraisch-funktionentheoritischen Untersuchungen von J. L. W. V. Jensen. Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7, 3–33 (1927)

  49. Pólya, G.: Über trigonometrische Integrale mit nur reellen Nullstellen. J. Reine Angew. Math. 158, 6–18 (1927)

    MathSciNet  MATH  Google Scholar 

  50. Pólya, G., Schur, J.: Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math. 144, 89–113 (1914)

    MathSciNet  MATH  Google Scholar 

  51. Pólya, G.: Collected papers. In: Boas, R.P. (ed.) Location of Zeros, vol. II. MIT Press, Cambridge (1974)

    Google Scholar 

  52. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. London Mathematical Society Monographs. New Series, 26. The Clarendon Press, Oxford University Press, Oxford (2002)

  53. Spira, R.: The integral representation for the Riemann \(\Xi \)- function. J. Number Theory 3, 498–501 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stewart, J.: Positive definite functions and generalizations, an historical survey. Rocky Mt. J. Math. 6, 409–434 (1976)

    Article  MATH  Google Scholar 

  55. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clarendon Press, Oxford (1937)

    Google Scholar 

  56. Titchmarsh, E.C.: The theory of the Riemann Zeta-function, 2nd edn. Oxford University Press, Oxford (1986) (revised by D. R. Heath-Brown)

  57. van de Lune, J., te Riele, H.J.J., Winter, D.T.: On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comp. 46, 667–681 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wintner, A.: A note on the Riemann \(\xi \)-function. J. Lond. Math. Soc. 10, 82–83 (1935)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Csordas.

Additional information

Communicated by Serguei Shimorin.

Dedicated to Dr. Robert D. Cushnie on the occasion of his $$80$$ 80 th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csordas, G. Fourier Transforms of Positive Definite Kernels and the Riemann \(\xi \)-Function. Comput. Methods Funct. Theory 15, 373–391 (2015). https://doi.org/10.1007/s40315-014-0105-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-014-0105-8

Keywords

Mathematics Subject Classification

Navigation