Skip to main content
Log in

Fast Computation of the Circular Map

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

This paper presents a new numerical implementation of Koebe’s iterative method for computing the circular map of bounded and unbounded multiply connected regions of connectivity \(m\). The computational cost of the presented method is \(O(m^2n+mn\log n)\) where \(n\) is the number of nodes in the discretization of each boundary component. The accuracy and efficiency of the method presented are demonstrated by several numerical examples. These examples include regions with high connectivity, a region with close-to-touching boundaries, and a region with piecewise smooth boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Andreev, V.V., McNicholl, T.H.: Estimating the error in the Koebe construction. Comput. Methods Funct. Theory 11, 707–724 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benchama, N., DeLillo, T.K., Hrycak, T., Wang, L.: A simplified Fornberg-like method for the conformal mapping of multiply connected regions—comparisons and crowding. J. Comput. Appl. Math. 209, 1–21 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Crowdy, D.: Analytical solutions for uniform potential flow past multiple cylinders. Eur. J. Mech. B Fluids 25, 459–470 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crowdy, D.: Calculating the lift on a finite stack of cylindrical aerofoils. Proc. R. Soc. A 462, 1387–1407 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crowdy, D.: Explicit solution for the potential flow due to an assembly of stirrers in an inviscid fluid. J. Eng. Math. 62, 333–344 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crowdy, D.: Geometric function theory: a modern view of a classical subject. Nonlinearity 21, T205–T219 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Crowdy, D.: Conformal slit maps in applied mathematics. ANZIAM J. 53, 171–189 (2012)

    Article  MATH  Google Scholar 

  8. Crowdy, D., Marshall, J.: Analytic formulae for the Kirchhoff–Routh path function in multiply connected domains. Proc. R. Soc. A 461, 2477–2501 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Crowdy, D., Marshall, J.: Conformal mappings between canonical multiply connected domains. Comput. Methods Funct. Theory 6(1), 59–76 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Crowdy, D., Marshall, J.: Computing the Schottky–Klein prime function on the schottky double of planar domains. Comput. Methods Funct. Theory 7(1), 293–308 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. DeLillo, T.K., Horn, M.A., Pfaltzgraff, J.A.: Numerical conformal mapping of multiply connected regions by Fornberg-like methods. Numer. Math. 83, 205–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gaier, D.: Konstruktive methoden der konformen abbildung. Springer, Berlin (1964)

    Book  MATH  Google Scholar 

  13. Gakhov, F.D.: Boundary Value Problem. Pergamon Press, Oxford (1966)

    Google Scholar 

  14. Goluzin, G.M.: Geometric Theory of Functions of a Complex Variable. American Mathematical Society, Rhode Island (1969)

    MATH  Google Scholar 

  15. Greengard, L., Gimbutas, Z.: FMMLIB2D: a MATLAB toolbox for fast multipole method in two dimensions, Version 1.2. http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html (2012)

  16. Gu, X., Zeng, W., Luo, F., Yau, S.T.: Numerical computation of surface conformal mappings. Comput. Methods Funct. Theory 11(2), 747–787 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Halsey, N.D.: Potential flow analysis of multielement airfoils using conformal mapping. Am. Inst. Aeronaut. Astronaut. J. 17, 1281–1288 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)

    MATH  Google Scholar 

  19. Klonowska, M.E., Prosnak, W.J.: On an effective method for conformal mapping of multiply connected domains. Acta Mech. 119, 35–52 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Koebe, P.: Über die konforme Abbildung mehrfach-zusammenhängender Bereiche. Jahresber. Deut. Math. Ver. 19, 339–348 (1910)

    MATH  Google Scholar 

  21. Koebe, P.: Abhandlungen zur theorie der konformen abbildung, iv. Abbildung mehrfach zusammenhängender schlichter bereiche auf schlitzbe-reiche. Acta Math. 41, 305–344 (1918)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58, 145–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kropf, E., Yin, X., Yau, S.T., Gu, X.D.: Conformal parameterization for multiply connected domains: combining finite elements and complex analysis. Eng. Comput. 30, 441–455 (2014)

  24. Luo, W., Dai, J., Gu, X., Yau, S.T.: Numerical conformal mapping of multiply connected domains to regions with circular boundaries. J. Comput. Appl. Math. 233, 2940–2947 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Marshall, D.E.: Conformal welding for finitely connected regions. Comput. Methods Funct. Theory 11(2), 655–669 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Murid, A.H.M., Nasser, M.M.S.: Eigenproblem of the generalized Neumann kernel. Bull. Malays. Math. Sci. Soc. 26, 13–33 (2003)

    MATH  MathSciNet  Google Scholar 

  27. Nasser, M.M.S.: A boundary integral equation for conformal mapping of bounded multiply connected regions. Comput. Methods Funct. Theory 9, 127–143 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nasser, M.M.S.: Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel. SIAM J. Sci. Comput. 31(3), 1695–1715 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nasser, M.M.S.: Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe’s canonical slit domains. J. Math. Anal. Appl. 382, 47–56 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nasser, M.M.S.: Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions. J. Math. Anal. Appl. 398, 729–743 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nasser, M.M.S.: Fast solution of boundary integral equations with the generalized Neumann kernel, pp. 1–33 (2014). arXiv:1308.5351

  32. Nasser, M.M.S., Al-Shihri, F.A.A.: A fast boundary integral equation method for conformal mapping of multiply connected regions. SIAM J. Sci. Comput. 35(3), A1736–A1760 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nasser, M.M.S., Murid, A.H.M.: Numerical experiments on eigenvalues of the generalized Neumann kernel. In: Murid, A.H.M., Yaacob, Y. (eds.) Advances in Group Theory, DNA Splicing and Complex Analysis, pp. 135–158. Penerbit UTM Press, Johor (2012)

  34. Nasser, M.M.S., Murid, A.H.M., Ismail, M., Alejaily, E.M.A.: A boundary integral equation with the generalized Neumann kernel for laplace’s equation in multiply connected regions. Appl. Math. Comput. 217, 4710–4727 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Nasser, M.M.S., Murid, A.H.M., Zamzamir, Z.: A boundary integral method for the Riemann–Hilbert problem in domains with corners. Complex Var. Elliptic Equ. 53(11), 989–1008 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rathsfeld, A.: Iterative solution of linear systems arising from the nyström method for the double-layer potential equation over curves with corners. Math. Methods Appl. Sci. 16(6), 443–455 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  37. Saad, Y., Schultz, M.H.: Gmres: a generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wegmann, R.: Constructive solution of a certain class of Riemann–Hilbert problems on multiply connected circular regions. J. Comput. Appl. Math. 130, 139–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wegmann, R.: Fast conformal mapping of multiply connected regions. J. Comput. Appl. Math. 130, 119–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wegmann, R.: Methods for numerical conformal mapping. In: Kühnau, R. (ed.) Handbook of Complex Analysis: Geometric Function Theory, vol. 2, pp. 351–477. Elsevier B. V., Amsterdam (2005)

  41. Wegmann, R., Murid, A.H.M., Nasser, M.M.S.: The Riemann–Hilbert problem and the generalized Neumann kernel. J. Comput. Appl. Math. 182, 388–415 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wegmann, R., Nasser, M.M.S.: The Riemann–Hilbert problem and the generalized Neumann kernel on multiply connected regions. J. Comput. Appl. Math. 214, 36–57 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wen, G.C.: Conformal Mapping and Boundary Value Problems. AMS, Providence (1992)

    Google Scholar 

  44. Zhang, M., Li, Y., Zeng, W., Gu, X.: Canonical conformal mapping for high genus surfaces with boundaries. Comput. Graph. 36, 417–426 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the editor-in-charge and the anonymous referees for their valuable comments and suggestions which improved the presentation of this paper. Further, the author thanks Prof. Leslie Greengard and Dr. Zydrunas Gimbutas for making the MATLAB toolbox FMMLIB2D [15] publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. S. Nasser.

Additional information

Communicated by Darren Crowdy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasser, M.M.S. Fast Computation of the Circular Map. Comput. Methods Funct. Theory 15, 187–223 (2015). https://doi.org/10.1007/s40315-014-0098-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-014-0098-3

Keywords

Mathematics Subject Classification

Navigation