Skip to main content
Log in

Grassmannian Frequency of Sobolev Dimension Distortion

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let \(f\) be a supercritical Sobolev map from a domain \(\Omega \) in \(\mathbb {R}^n\) into a complete separable metric space. For a fixed integer \(m\), \(0<m<n\), and \(\alpha >m\), we estimate from above the Hausdorff dimension of the set of elements \(V\) in the Grassmannian \(G(n,m)\) (equipped with a Riemannian metric) such that \(f(V\cap \Omega )\) has positive \(\alpha \)-dimensional Hausdorff measure. The proof relies heavily on the homogeneous structure of both \(G(n,m)\) and the Stiefel manifold \(O(n,m)\) of orthogonal injections of \(\mathbb {R}^m\) into \(\mathbb {R}^n\). A novel feature of the proof is a Morrey–Sobolev-type embedding theorem on the product manifold \(O(n,m)\times \mathbb {R}^m\), valid for Sobolev maps which factor through the evaluation map \(\Phi :O(n,m)\times \mathbb {R}^m\rightarrow \mathbb {R}^n\), \(\Phi (\pi ,x)=\pi (x)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The Stiefel manifold is usually defined as the space of orthonomal \(m\)-frames in \(\mathbb {R}^n\). This space is canonically identified with \(O(n,m)\) via the bijection \(\pi \leftrightarrow (\pi (\mathbf e_1),\ldots ,\pi (\mathbf e_m))\), where \(\mathbf e_1,\ldots ,\mathbf e_m\) denotes the standard basis in \(\mathbb {R}^m\).

  2. In Appendix B of [16], in the argument following equation (B3), reverse the roles of \(k=m\) and \(n-k\) and project into a different \(k\times k\) submatrix. Note also that the argument in [16] is presented for the complex Stiefel manifold and must be slightly reworded to apply to the real case.

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  2. Astala, K.: Area distortion of quasiconformal mappings. Acta Math. 173(1), 37–60 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balogh, Z.M., Monti, R., Tyson, J.T.: Frequency of Sobolev and quasiconformal dimension distortion. J. Math. Pures Appl. (9), 99(2), 125–149 (2013)

    Google Scholar 

  4. Balogh, Z.M., Tyson, J.T., Wildrick, K.: Frequency of Sobolev dimension distortion of horizontal subgroups of Heisenberg groups. Preprint (2013)

  5. Balogh, Z.M., Tyson, J.T., Wildrick, K.: Dimension distortion by Sobolev mappings in foliated metric spaces. Anal. Geometry Metric Spaces 1, 232–254 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Barg, A., Nogin, D.Yu.: Bounds on packings of spheres in the Grassmann manifold. IEEE Trans. Inform. Theory 48(9), 2450–2454 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bishop, C.J., Hakobyan, H.: Frequency of dimension distortion under quasisymmetric mappings. Preprint (2012)

  8. Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5(2), 139–159 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gehring, F.W.: Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gehring, F.W.: The \(L^{p}\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gehring, F.W., Väisälä, J.: Hausdorff dimension and quasiconformal mappings. J. London Math. Soc. 2(6), 504–512 (1973)

    Article  Google Scholar 

  12. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems, volume 30 of Oxford Statistical Science Series. Oxford University Press, Oxford (2004)

    Google Scholar 

  13. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x+101 (2000)

  14. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)

    Book  MATH  Google Scholar 

  15. Hencl, S., Honzík, P.: Dimension of images of subspaces under Sobolev mappings. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(3), 401–411 (2012)

    Google Scholar 

  16. Henkel, O.: Sphere-packing bounds in the Grassmann and Stiefel manifolds. IEEE Trans. Inform. Theory 51(10), 3445–3456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaufman, R.P.: Sobolev spaces, dimension, and random series. Proc. Am. Math. Soc. 128(2), 427–431 (2000)

    Article  MATH  Google Scholar 

  18. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)

  19. Wong, Y.-C.: Differential geometry of Grassmann manifolds. Proc. Natl. Acad. Sci. USA 57, 589–594 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy T. Tyson.

Additional information

Communicated by Bruce Palka.

Z.M.B. supported by the Swiss National Science Foundation, European Research Council Project GALA and European Science Foundation Project HCAA. P.M. supported by the Academy of Finland and the Mathematisches Institut, Universität Bern. J.T.T. supported by US National Science Foundation Grants DMS-0901620 and DMS-1201875.

In memory of Frederick W. Gehring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, Z.M., Mattila, P. & Tyson, J.T. Grassmannian Frequency of Sobolev Dimension Distortion. Comput. Methods Funct. Theory 14, 505–523 (2014). https://doi.org/10.1007/s40315-014-0058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-014-0058-y

Keywords

Mathematics Subject Classification (2010)

Navigation