Skip to main content

Advertisement

Log in

Lindelöf’s Principle and Estimates for Holomorphic Functions Involving Area, Diameter or Integral Means

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Suppose that \(f\) is a holomorphic function in the unit disk. We provide bounds for the distance of \(f\) from its linearization \(f(0)+f^\prime (0)z\); the bounds involve the area, the diameter or the logarithmic capacity of the image \(f({\mathbb D})\) of \(f\). These results are motivated by a problem posed by Burckel, Marshall, Minda, Poggi-Corradini, and Ransford. We also prove that if, in addition, \(f(0)=0\), then the \(H^2\) norm of \(f\) is bounded by a \(\mathrm{Area}f^{\circledcirc }({\mathbb D})/\pi \), where \(f^{\circledcirc }\) is a univalent function constructed via the symmetric decreasing rearrangement of the real part of \(f\) on the unit circle. The above estimate is stronger than a well-known inequality due to Alexander, Taylor, and Ullman. We give a description of the equality cases in Lindelöf’s principle for the Green function. We prove that the \(H^p\) norm of \(f\) is smaller or equal to the \(H^p\) norm of the universal covering map onto the circular (\(0<p<\infty \)) or Steiner (\(0<p\le 2\)) symmetrization of the range of \(f\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, H., Osserman, R.: Area bounds for various classes of surfaces. Am. J. Math. 97, 753–769 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alexander, H., Taylor, B.A., Ullman, J.L.: Areas of projections of analytic sets. Invent. Math. 16, 335–341 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aulaskari, R., Chen, H.: Area inequality and \(Q_p\) norm. J. Funct. Anal. 221, 1–24 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baernstein II, A.: Integral means, univalent functions and circular symmetrization. Acta Math. 133, 139–169 (1974)

    Article  MathSciNet  Google Scholar 

  5. Baernstein II, A.: Some sharp inequalities for conjugate functions. Indiana Univ. Math. J. 27, 833–852 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bandle, C.: Isoperimetric Inequalities and Applications. Pitman, London (1980)

    MATH  Google Scholar 

  7. Betsakos, D.: Equality cases in the symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels. Ann. Acad. Sci. Fenn. Math. 33, 413–427 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Burckel, R.B., Marshall, D.E., Minda, D., Poggi-Corradini, P., Ransford, T.J.: Area, capacity and diameter versions of Schwarz’s lemma. Conform. Geom. Dyn. 12, 133–152 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carathéodory, C.: Theory of Functions of a Complex Variable, 2nd edn. Chelsea Publications, New York (1960)

    Google Scholar 

  10. Duren, P.L.: Theory of \(H^{p}\) Spaces. Dover Publications, New York (2000)

    Google Scholar 

  11. Dubinin, V.N.: Symmetrization in the geometric theory of functions of a complex variable. Russian Math. Surveys 49, 1–79 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dubinin, V.N.: On I.P. Mityuk’s results on the behavior of the inner radius of a domain and the condenser capacity under regular mappings. (in Russian) Zap. Nauchn. Sem. POMI 371, 37–55 (2009). English version in Journal of Mathematical Sciences (New York) 166, 145–154 (2010)

  13. Dubinin, V.N., Vuorinen, M.: Robin functions and distortion theorems for regular mappings. Math. Nachr. 283, 1589–1602 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Essén, M., Shea, D.F.: On some questions of uniqueness in the theory of symmetrization. Ann. Acad. Sci. Fenn. Ser.A I Math. 4, 311–340 (1978/1979)

    Google Scholar 

  15. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  16. Hayman, W.K.: Multivalent Functions, 2nd edn. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  17. Hayman, W.K.: Subharmonic Functions, vol. 2. Academic Press, London (1989)

    MATH  Google Scholar 

  18. Hayman, W.K., Kennedy, P.B.: Subharmonic Functions, vol. 1. Academic Press, London (1976)

    MATH  Google Scholar 

  19. Kobayashi, S.: Range sets and BMO norms of analytic functions. Canad. J. Math. 36, 747–755 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kobayashi, S.: Image areas and \(BMO\) norms of analytic functions. Kodai Math. J. 8, 163–170 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lehto, O.: On the distribution of values of meromorphic functions of bounded characteristic. Acta Math. 91, 87–112 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mityuk, I.P.: Symmetrization principle for multiply connected domains. Dokl. Acad. Nauk SSSR 157, 268–270 (1964)

    Google Scholar 

  23. Nevanlinna, R.: Analytic Functions. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  24. Papadimitrakis, M., Pouliasis, S.: Condenser capacity under multivalent functions. Comput. Methods Funct. Theory 13, 11–20 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pavlović, M.: Green’s formula and the Hardy-Stein identities. Filomat 23, 135–153 (2009)

    Article  MATH  Google Scholar 

  26. Pólya, G., Szegö, G.: Problems and Theorems in Analysis. I. Springer, Berlin (1978)

    Google Scholar 

  27. Pruss, A.R.: Steiner symmetry, horizontal convexity, and some Dirichlet problems. Indiana Univ. Math. J. 46, 863–895 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  29. Ryff, J.V.: Subordinate \(H^p\) functions. Duke Math. J. 33, 347–354 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sakai, M.: Isoperimetric inequalities for the least harmonic majorant of \(|x|^p\). Trans. Am. Math. Soc. 299, 431–472 (1987)

    MATH  Google Scholar 

  31. Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  32. Solynin, A.Y.: Functional inequalities via polarization. Algebra i Analiz 8, 148–185 (1996) (in Russian); English transl. in St.Petersburg Math. J. 8, 1015–1038 (1997)

  33. Stanton, C.S.: Isoperimetric inequalities and \(H^p\) estimates. Complex Variables 12, 17–21 (1989)

    Article  MATH  Google Scholar 

  34. Stephenson, K.: Weak subordination and stable classes of meromorphic functions. Trans. Am. Math. Soc. 262, 565–577 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  35. Weitsman, A.: Symmetrization and the Poincaré metric. Ann. Math. 124(2), 159–169 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Betsakos.

Additional information

Communicated by Alexander Yu. Solynin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betsakos, D. Lindelöf’s Principle and Estimates for Holomorphic Functions Involving Area, Diameter or Integral Means. Comput. Methods Funct. Theory 14, 85–105 (2014). https://doi.org/10.1007/s40315-014-0049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-014-0049-z

Keywords

Mathematics Subject Classification (1991)

Navigation