Skip to main content
Log in

Univalent Functions with Half-Integral Coefficients

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

B. Friedman discovered in his 1946 paper that the set of analytic univalent functions on the unit disk in the complex plane with integral Taylor coefficients consists of nine functions. In the present paper, we prove that the similar set obtained by replacing “integral” by “half-integral” consists of another 12 functions in addition to the nine. We also observe geometric properties of the 12 functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avkhadiev, F.G., Wirths, K.J.: Concave schlicht functions with bounded opening angle at infinity. Lobachevskii J. Math. 17, 3–10 (2005). (electronic)

    MathSciNet  MATH  Google Scholar 

  2. Bernardi, S.D.: Note on an inequality of Prawitz. Duke Math. J. 23, 385–391 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bieberbach, L.: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreis vermitteln. S.-B. Preuss. Akad. Wiss. 38, 940–955 (1916)

    Google Scholar 

  4. Friedman, B.: Two theorems on schlicht functions. Duke Math. J. 13, 171–177 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gong, S.: The Bieberbach Conjecture. Am. Math. Soc. (1999)

  6. Jenkins, J.A.: On univalent functions with integral coefficients. Complex Variables Theory Appl. 9, 221–226 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaplan, W.: Close-to-convex schlicht functions. Michigan Math. J. 1, 169–185 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kim, Y.C., Sugawa, T.: Univalence criteria and analogues of the John constant, to appear in Bull. Austr. Math. Soc. doi. 10.1017/S0004972712000962

  9. Linis, V.: Note on univalent functions. Am. Math. Mon. 62, 109–110 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  10. Milin, I.M.: Functions, Univalent, Systems, Orthonormal, Society, American Mathematical, Providence, R.I.: Translated from the Russian. Translations of Mathematical Monographs, vol. 49 (1977)

  11. Obradović, M., Ponnusamy, S.: New criteria and distortion theorems for univalent functions. Complex Variables Theory Appl. 44, 173–191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pommerenke, Ch.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  13. Royster, W.C.: Rational univalent functions. Am. Math. Mon. 63, 326–328 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  14. Salem, R.: Power series with integral coefficients. Duke Math. J. 12, 153–172 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shah, T.-S.: On the coefficients of schlicht functions. J. Chin. Math. Soc. (N.S.) 1, 98–107 (1951)

    Google Scholar 

  16. Townes, S.B.: A theorem on schlicht functions. Proc. Am. Math. Soc. 5, 585–588 (1954)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Ponnusamy for bringing their attention to a paper [6] by Jenkins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Sugawa.

Additional information

Communicated by Dmitri Khavinson.

The present research was supported in part by JSPS Grant-in-Aid for Scientific Research (B) 22340025 and contains part of Master’s thesis of the first author.

Appendix

Appendix

In the present section, we collect several formulae which are useful in the Proof of Theorem 1.2. Let \(f(z)=z+a_2z^2+a_3z^3+\cdots \) be in \(\mathcal{A }\) and \(1/f(z)=1/z+b_0+b_1z+b_2z^2+\cdots .\) We first note that the coefficients \(b_n\) are computed in terms of \(a_n\)’s recursively by the formula

$$\begin{aligned} b_{n-1}=-a_{n+1}-\sum _{k=2}^n a_kb_{n-k},\quad n\ge 1. \end{aligned}$$
(5.1)

In particular, we have

$$\begin{aligned} b_0&= -a_2, \\ b_1&= -a_3+a_2^2, \\ b_2&= -a_4+2a_2a_3-a_2^3, \\ b_3&= -a_5+2a_2a_4+a_3^2-3a_2^2a_3+a_2^4, \\ b_4&= -a_6+2a_2a_5+2a_3a_4-3a_2^2a_4-3a_2a_3^2+4a_2^3a_3-a_2^5, \end{aligned}$$

and so on. The Grunsky coefficients \(c_{j,k}\) of \(f\) can be computed recursively by

$$\begin{aligned} c_{j,k}=\sum _{l=1}^{k-1}\frac{l}{k} a_{k-l}c_{j+1,l}-\sum _{m=1}^j a_{m+1}c_{j-m,k} -\frac{a_{j+k+1}}{k} \end{aligned}$$

for \(j\ge 0\) and \(k\ge 1\) (see [8] for details). Here, we set \(a_1=1.\) It is easy to see that \(c_{j,k}\) can be expressed as a polynomial in \(a_2,\ldots ,a_{j+k+1}.\) We also note that \(c_{j,k}=c_{k,j}.\) For convenience, we write down the coefficients \(c_{j,k}\) for \(1\le j\le k\le 3\) so that the reader can compute the Grunsky matrices of orders \(2\) and \(3:\)

$$\begin{aligned} c_{1,1}&= -a_3+a_2^2, \\ c_{1,2}&= -a_4+2a_2a_3-a_2^3, \\ c_{1,3}&= -a_5+2a_2a_4+a_3^2-3a_2^2a_3+a_2^4, \\ c_{2,2}&= -a_5+2a_2a_4+\frac{3}{2}a_3^2-4a_2^2a_3+\frac{3}{2}a_2^4, \\ c_{2,3}&= -a_6+2a_2a_5+3a_3a_4-4a_2^2a_4-5a_2a_3^2+7a_2^3a_3-2a_2^5, \\ c_{3,3}&= -a_7+2a_2a_6+3a_3a_5-4a_2^2a_5+2a_4^2-12a_2a_3a_4 \\&\!\!\!+8a_2^3a_4-\frac{7}{3}a_3^3 +15a_2^2a_3^2-14a_2^4a_3+\frac{10}{3}a_2^6. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiranuma, N., Sugawa, T. Univalent Functions with Half-Integral Coefficients. Comput. Methods Funct. Theory 13, 133–151 (2013). https://doi.org/10.1007/s40315-013-0009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-013-0009-z

Keywords

Mathematics Subject Classification (2000)

Navigation