Skip to main content
Log in

Superconvergence analysis for nonlinear parabolic equation with \(EQ_1^\mathrm{{rot}}\) nonconforming finite element

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

\(EQ_1^\mathrm{{rot}}\) nonconforming finite element method (FEM) applied to a class of nonlinear parabolic equation is discussed. First, by use of two typical characters of this element (one is that the associated FE interpolation operator is identical to its traditional Ritz projection operator; the other is that the consistency error is of order \(O(h^2)\), one order higher than the interpolation error, when the exact solution of the problems belongs to \(H^3(\Omega )\)), the supercloseness of order \(O(h^2)\) in broken \(H^1\)-norm for semi-discrete scheme is obtained without the boundedness of numerical solution in \(L^\infty \)-norm through splitting the numerical solution into several parts. Moreover, we get the desired result with requirement of \(u,u_t\in H^3(\Omega )\) only. Secondly, a linearized Crank–Nicolson fully discrete scheme is proposed and the superclose property of order \(O(h^2+\tau ^2)\) is derived by constructing a suitable auxiliary problem. Finally, a numerical example is carried out to confirm our theoretical analysis. Here, h is the subdivision parameter and \(\tau \) is the time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chatzipantelidis P, Lazarov RD, Thomée V (2003) Error estimates for the finite volume element method for parobolic equations in convex polygonal domains[J]. Numer Methods Part Differ Equ 20:650–674

    Article  MATH  Google Scholar 

  • Chen FX (2014) Crank-Nicolson fully discrete \(H^1\)-Galerkin mixed finite element approximation of one nonlinear integro-differential model[J]. Abstr Appl Anal. Article ID 534902, p 8

  • Dawson C, Kirby R (1999) Solution of parabolic equation by backward Euler-mixed finite element methods on a dynamically changing mesh[J]. SIAM J Numer Anal 37(2):423–442

    Article  MathSciNet  MATH  Google Scholar 

  • Dendy JE (1977) JR Galerkin’s method for some highly nonlinear problems[J]. SIAM J Numer Anal 14(2):327–347

    Article  MathSciNet  MATH  Google Scholar 

  • Gao HD (2016) Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear Thermistor equations. J Sci Comput 66(2):504–527

    Article  MathSciNet  MATH  Google Scholar 

  • Gao GH, Wang TK (2010) Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations[J]. J Comput Math 233(9):2285–2301

    Article  MathSciNet  MATH  Google Scholar 

  • Goswami D, Pani AK, Yadav S (2013) Optimal error estimates of two mixed finite element methods for parabolic integro-differential equations with nonsmooth initial data[J]. J Sci Comput 56(1):131–164

    Article  MathSciNet  MATH  Google Scholar 

  • He XM, Lin T, Lin YP, Zhang X (2013) Immersed finite element methods for parabolic equations with moving interface[J]. Numer Methods Part Differ Equ 29(2):619–646

    Article  MathSciNet  MATH  Google Scholar 

  • Hu J, Man HY, Shi ZC (2005) Constrained nonconforming rotated \(Q^1\) element for Stokes flow and planar elasticity[J]. Math Numer Sinic 27(3):311–324

    MathSciNet  Google Scholar 

  • Jia SH, Xie HH, Yin XB, Gao SQ (2009) Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods[J]. Appl Math 54(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Lin Q, Tobiska L, Zhou AH (2005) Superconvergence and extrapolation of nonconformimg low order finite elements applied to the poisson equation[J]. IMA J Numer Anal 25:160–181

    Article  MathSciNet  MATH  Google Scholar 

  • Li QH, Wang JP (2013) Weak Galerkin finite element methods for parabolic equations[J]. Numer Methods Part Differ Equ 29(6):2004–2024

    MathSciNet  MATH  Google Scholar 

  • Luskin M (1979) A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions[J]. SIAM J Numer Anal 16(2):284–299

    Article  MathSciNet  MATH  Google Scholar 

  • Pani AK (1998) An \(H^1\)-Galerkin mixed finite element methods for parabolic partial differential equatios[J]. SIAM J Numer Anal 35(2):712–727

    Article  MathSciNet  MATH  Google Scholar 

  • Pani AK (2002) \(H^1\)-Galerkin mixed finite element methods for parabolic partial integro-differential equations[J]. IMA J Numer Anal 22:231–252

    Article  MathSciNet  MATH  Google Scholar 

  • Pani AK, Fairweather G (2003) An \(H^1\)-Galerkin mixed finite element method for an evolution equation with a positive-type memory term[J]. SIAM J Numer Anal 40(4):1475–1490

    Article  MathSciNet  MATH  Google Scholar 

  • Park CJ, Sheen DW (2003) \(P^1\)-nonconforming quadrilateral finite element method for second order elliptic problem[J]. SIAM J Numer Anal 41(2):624–640

    Article  MathSciNet  MATH  Google Scholar 

  • Rannacher R, Turek S (1992) Simple nonconforming quadrilateral Stokes element[J]. Numer Methods Part Differ Equ 8(2):97–111

    Article  MathSciNet  MATH  Google Scholar 

  • Shi DY, Mao SP, Chen SC (2005) An anisotropic nonconforming finite element with some superconvergence results[J]. J Comput Math 23(3):261–274

    MathSciNet  MATH  Google Scholar 

  • Shi DY, Wang HH, Du YP (2009) An anisotropic nonconforming finite element method for approximating a class of nonlinear Sobolev equations[J]. J Comput Math 27(2–3):299–314

    MathSciNet  MATH  Google Scholar 

  • Shi DY, Xu C, Chen JH (2013) Anisotropic nonconforming \(EQ^{\rm {rot}} _1\) quadrilateral finite element approximation to second order elliptic problems[J]. J Sci Comput 56:637–653

    Article  MathSciNet  MATH  Google Scholar 

  • Shi DY, Guan HB, Gong W (2014) High accuracy analysis of the characteristic-nonconforming FEM for a convection-dominated transport problem[J]. Math Comput Simul 37:1130–1136

    MathSciNet  MATH  Google Scholar 

  • Shi DY, Tang QL, Gong W (2015) A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term[J]. Math Comput Simul 114:25–36

    Article  MathSciNet  Google Scholar 

  • Shi DY, Wang CX, Tang QL (2015) Anisotropic crouzeix-raviart type nonconforming finite element methods to variational inequality problem with displacement obstacle[J]. J Comput Math 33(1):86–99

    Article  MathSciNet  MATH  Google Scholar 

  • Shi DY, Pei LF (2008) Low order Crouzeix-Raviart type nonconforming finite element methods for approximating Maxwell’s equations[J]. Int J Numer Anal Mod 5(3):373–385

    MathSciNet  MATH  Google Scholar 

  • Shi DY, Wang CX (2007) Superconvergence analysis of the nonconforming mixed finite element method for Stokes problem[J]. Acta Math Appl Sin 30(6):1056–1064

    MathSciNet  MATH  Google Scholar 

  • Shi DY, Xu C (2013) \(EQ^{\rm {rot}} _1\) nonconforming finite element approximation to Signorini problem[J]. Sci China Math 56(6):1301–1311

    Article  MathSciNet  Google Scholar 

  • Sinha RK, Ewing RE, Lazarov RD (2008) Some new error estimates of a semidicrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data[J]. SIAM J Numer Anal 43(6):2320–2344

    Article  MATH  Google Scholar 

  • Sinha RK, Ewing RE, Lazarov RD (2009) Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data[J]. SIAM J Numer Anal 47(5):3269–3292

    Article  MathSciNet  MATH  Google Scholar 

  • Sun TJ, Ma KY (2014) Domain decomposition procedures combined with \(H^1\)-Galerkin mixed finite element method for parabolic equation[J]. J Comput Math 267:33–48

    Article  MathSciNet  MATH  Google Scholar 

  • Thomée V (2000) Galerkin finite element methods for parabolic problems[M]. Springer series in computational mathematics, Sweden

    MATH  Google Scholar 

  • Wang TK (2008) Alternating direction finite volume element methods for 2D parabolic partial differential equations[J]. Numer Methods Part Differ Equ 24(1):24–40

    Article  MathSciNet  MATH  Google Scholar 

  • Yang DQ (2000) Improved error estimation of dynamic finite element methods for second-order parabolic equations[J]. J Comput Appl Math 126(1–2):319–338

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang YD, Shi DY (2013) Superconvergence of an \(H^1\)-Galerkin nonconforming mixed finite element method for a parabolic equation[J]. Comput Math Appl 66(11):2362–2375

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11271340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Shi.

Additional information

Communicated by Jose Alberto Cuminato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Wang, J. & Yan, F. Superconvergence analysis for nonlinear parabolic equation with \(EQ_1^\mathrm{{rot}}\) nonconforming finite element. Comp. Appl. Math. 37, 307–327 (2018). https://doi.org/10.1007/s40314-016-0344-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0344-6

Keywords

Mathematics Subject Classification

Navigation