Skip to main content
Log in

On the approximate controllability of Stackelberg–Nash strategies for linearized micropolar fluids in moving domains

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study a Stackelberg strategy subject to the evolutionary linearized micropolar fluids equations in domains with moving boundaries. We consider a Nash multi-objective equilibrium (non necessarily cooperative) for the “follower players” (as is called in the economy field) and an optimal problem for the leader player with approximate controllability objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araruna FD, Chaves-Silva FW, Rojas-Medar MA (2010) Exact controllability of Galerkin’s approximations of micropolar fluids. Proc Am Math Soc 138:1361–1370

    Article  MATH  MathSciNet  Google Scholar 

  • Belmiloudi A (2008) Stabilization, optimal and robust control-theory and applications in biological and physical sciences. Springer, Berlin

    MATH  Google Scholar 

  • Calmelet-Eluhu C, Rosenhaus V (2001) Symmetries and solution of a micropolar fluid flow through a cylinder. Acta Mechanica 147:59–72

    Article  MATH  Google Scholar 

  • Dupuy D, Panasenko GP, Stavre R (2004) Asymptotic methods for micropolar fluids in a tube structure. Math Models Methods Appl Sci 14(5):735–758

    Article  MATH  MathSciNet  Google Scholar 

  • Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  • Eringen AC (1978) Micropolar theory of liquid crystals. In: Liquid crystal and ordered fluids. Plenum, New York, pp 443–471

  • Fernandez-Cara E, Guerrero S (2007) Local exact controllability of micropolar fluids. J Math Fluid Mech 9:419–453

    Article  MATH  MathSciNet  Google Scholar 

  • Lions J-L, Zuazua E (1997) Contrôlabilité exacte des approximations de Galerkin des équations de Navier–Stokes. C R Acad Sci Paris Ser I 234:1015–1021

    Article  MathSciNet  Google Scholar 

  • Lions J-L, Zuazua E (1998) Exact boundary controllability of Galerkin’s approximations of Navier–Stokes equations. Ann Scuola Norm Sup Pisa Cl Sci XXVI(4):605–621

    MathSciNet  Google Scholar 

  • Lukaszewicz G (1999) Micropolar fluids, theory and applications, modeling and simulation in science, engineering and technology. Birkhauser Boston Inc., Boston

    Google Scholar 

  • Popel AS, Regirer SA, Usick PI (1974) A continuum model of blood flow. Biorheology 11:427–437

    Google Scholar 

  • Rockafellar RT (1969) Convex analysis. Princeton University Press, Princeton

    Google Scholar 

  • Simon J (1987) Compact sets in the space \(L^{p}(0, T;B)\). Ann Math Pura Appl CXLVI(4):65–96

    Google Scholar 

  • Von Stackelberg H (1934) Marktform und Gleichgewicht. Springer, Berlin

    Google Scholar 

  • Stavre R (2002) The control of the pressure for a micropolar fluid, dedicated to Eugen Soós. Z Angew Math Phys 53(6):912–922

    Article  MATH  MathSciNet  Google Scholar 

  • Yamaguchi N (2005) Existence of global strong solution to the micropolar fluid system in a bounded domain. Math Meth Appl Sci 28:1507–1526

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. de Jesus.

Additional information

Communicated by José Mario Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jesus, I.P., de Menezes, S.B. On the approximate controllability of Stackelberg–Nash strategies for linearized micropolar fluids in moving domains. Comp. Appl. Math. 34, 587–606 (2015). https://doi.org/10.1007/s40314-014-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0126-y

Keywords

Mathematics Subject Classification (2000)

Navigation