Skip to main content
Log in

Finite-Time \({H_\infty }\) Synchronization for Complex Dynamical Networks with Markovian Jump Parameter

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, the problem of finite-time \({H_\infty }\) synchronization for complex dynamical networks with Markovian jump parameter is investigated. This purpose is concentrated on designing controller such that the obtain synchronization error system is finite-time \({H_\infty }\) synchronization. Based on the delay subinterval decomposition approach and linear matrix inequality approach, a new Lyapunov–Krasovskii functional is proposed to acquire the sufficient condition. Finally, numerical simulations are exploited to demonstrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali, M. S., Saravanakumar, R., & Zhu, Q. X. (2015). Less conservation delay-dependent control of uncertain neural networks with discrete interval and distributed time-varying delays. Neurocomputing, 166, 84–95.

    Article  Google Scholar 

  • Balasubramaniam, P., & Chandran, R. (2011). Delay decomposition approach to stability analysis for uncertain fuzzy Hopfield neural networks with time-varying delay. Communications in Nonlinear Science and Numerical Simulation, 16, 2098–2108.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C., Li, L. X., Peng, H. P., et al. (2017). Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays. PLoS ONE, 12(9), e0185007.

    Article  Google Scholar 

  • Chen, W. H., Jiang, Z. Y., Lu, X. M., & Luo, S. X. (2015). Synchronization for complex dynamical networks with coupling delays using distributed impulsive control. Nonlinear Analysis: Hybrid Systems, 17, 111–127.

    MathSciNet  MATH  Google Scholar 

  • Chen, Y. G., Bi, W. P., & Li, W. L. (2010). Stability analysis for neural networks with time-varying delay: A more general decomposition approach. Neurocomputing, 73, 853–857.

    Article  Google Scholar 

  • Cheng, J., Zhu, H., Zhong, S. M., Zeng, Y., & Dong, X. C. (2013). Finite-time control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functional. ISA Transactions, 52, 768–774.

    Article  Google Scholar 

  • Cheng, M. F., & Hu, H. P. (2011). Synchronization of impulsively-coupled complex switched networks. In Chinese control and decision conference (pp. 177–184).

  • Cui, W. X., Sun, S. Y., Fang, J. A., Xu, Y. L., & Zhao, L. D. (2014). Finite-time synchronization of Markovian jump complex networks with partially unknown transition rates. Journal of The Franklin Institute, 351, 2543–2561.

    Article  MathSciNet  MATH  Google Scholar 

  • D’Addona, D. M., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Science Direct, 12, 252–257.

    Google Scholar 

  • Duan, W., Cai, C., Zou, Y., & You, J. (2013). Synchronization criteria for singular complex dynamical networks with delayed coupling and non-delayed coupling. Control Theory Applications, 30, 947–955.

    MATH  Google Scholar 

  • Fei, Z., Gao, H., & Shi, P. (2009). New results on stabilization of Markovian jump systems with time delay. Automatica, 45, 2300–2306.

    Article  MathSciNet  MATH  Google Scholar 

  • Jing, T. Y., Chen, F. Q., & Li, Q. H. (2015). Finite-time mixed outer synchronization of complex networks with time-varying delay and unknown parameters. Applied Mathematical Modelling, 39, 7734–7743.

    Article  MathSciNet  Google Scholar 

  • Kalpana, M., Balasubramaniam, P., & Ratnavelu, K. (2015). Sirect delay decomposition approach to synchronization of chaotic fuzzy cellular neural networks with discrete, unbounded distributed delays and Markovian jumping parameters. Applied Mathematica and Computation, 254, 291–304.

    Article  MATH  Google Scholar 

  • Lakshmanan, S., Mathiyalagan, K., Park, J. H., Sakthivel, R., & Rihan, F. A. (2014). Delay-dependent state estimation of neural networks with mixed time-varying delays. Neurpcomputing, 129, 392–400.

    Article  Google Scholar 

  • Li, H. J. (2013). Cluster synchronization and state estimation for complex dynamical networks with mixed time delays. Applied Mathematical Modelling, 37, 7223–7244.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, D., & Cao, J. D. (2015). Finite-time synchronization of coupled networks with one single time-varying delay coupling. Neurocomputing, 166, 265–270.

    Article  Google Scholar 

  • Li, F., & Shen, H. (2015). Finite-time synchronization control for semi-Markov jump delayed neural networks with randomly occurring uncertainties. Neurpcomputing, 166, 447–454.

    Article  Google Scholar 

  • Li, Z. K., Duan, Z. S., & Chen, G. R. (2009). Disturbance rejection and pinning control of linear complex dynamical networks. Chinese Physics B, 18, 5228–5234.

    Article  Google Scholar 

  • Liu, P. L. (2013a). A delay decomposition approach to stability analysis of neutral systems with time-varying delay. Applied Mathematical Modelling, 37, 5013–5026.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, P. L. (2013b). State feedback stabilization of time-varying delay uncertain system: A delay decomposition approach. Linear Algebra and Its Applications, 438, 2188–2209.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, P. L. (2015). Delayed decomposition approach to the robust absolute stability of a Lur’e control system with time-varying delay. Applied Mathematical Modeling, 00, 1–13.

    Google Scholar 

  • Liu, K., & Fridman, E. (2012). Networked-based stabilization via discontinuous Lyapunov functional. International Journal of Robust and Nonlinear Control, 22, 420–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, X. H., Yu, X. H., & Xi, H. S. (2015). Finite-time synchronization of neural complex networks with Markovian switching based on pinning controller. Neurocomputing, 153, 148–158.

    Article  Google Scholar 

  • Lu, P. L., & Yang, Y. (2012). Synchronization of a class of complex networks. In Chinese control conference (pp. 1136–1141).

  • Ma, N. N., Liu, Z. B., & Chen, L. (2018). Robust and non-fragile finite time \({H_\infty }\) synchronization control for complex networks with uncertain inner coupling. Computational and Applied Mathematics, 37, 5395–5409.

    Article  MathSciNet  MATH  Google Scholar 

  • Mei, J., Jiang, M. H., Xu, W. M., & Wang, B. (2013). Finite-time synchronization control of complex networks with time delay. Communications in Nonlinear Science and Numerical Simulation, 18, 2462–2478.

    Article  MathSciNet  MATH  Google Scholar 

  • Revathi, V. M., Balasubramaniam, P., & Ratnavelu, K. (2016). Delay-dependent filtering for complex dynamical networks with time-varying delays in nonlinear function and network couplings. Signal Processing, 118, 122–132.

    Article  Google Scholar 

  • Shao, Y. Y., Liu, X. D., Sun, X., & Zhang, Q. L. (2014). A delay decomposition approach to admissibility for discrete-time singular delay systems. Information Sciences, 279, 893–905.

    Article  MathSciNet  MATH  Google Scholar 

  • Shen, H., Park, J. H., Wu, Z. G., & Zhang, Z. Q. (2015). Finite-time synchronization for complex networks with semi-Markov jump topology. Communications in Nonlinear Science and Numerical Simulation, 24, 40–51.

    Article  MathSciNet  Google Scholar 

  • Sun, Y. Z., Li, W., & Zhao, D. H. (2012). Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chao, 22, 023152.

    Article  MathSciNet  MATH  Google Scholar 

  • Su, L., & Shen, H. (2015). Mixed/passive synchronization for complex dynamical networks with sampled-data control. Applied Mathematical and Computation, 259, 931–942.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H., & Xue, A. (2011). New stability criterion for singular time-delay systems and its application to partial element equivalent circuit. Control Theory Applications, 28, 1431–1435.

    Google Scholar 

  • Wu, H. Q., Zhang, X. W., Li, R. X., & Yao, R. (2015). Finite-time synchronization of chaotic neural networks with mixed time-varying delays and stochastic disturbance. Memetic Computing, 7, 1–10.

    Article  Google Scholar 

  • Wu, L., Su, X., Shi, P., & Qiu, J. (2011). A new approach to stability analysis and stabilization of discrete-time T–S fuzzy time-varying delay systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40, 273–286.

    Article  Google Scholar 

  • Xu, R. P., Kao, Y. G., & Gao, M. M. (2015). Finite-time synchronization of Markovian jump complex networks with generally uncertain transition rates. Journal of Biological Chemistry, 271, 14271–14279.

    Google Scholar 

  • Xu, Y. H., Zhou, W. N., Fang, J. A., Xie, C. R., & Tong, D. B. (2016). Finite-time synchronization of the complex dynamical network with non-derivative and derivative coupling. Neurocomputing, 173, 1356–1361.

    Article  Google Scholar 

  • Yang, X. S., & Cao, J. D. (2010). Finite-time stochastic synchronization of complex networks. Applied Mathematical Modeling, 34, 3631–3641.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, R., Zhang, Z., & Shi, P. (2010). Exponential stability on stochastic neural networks with discrete interval and distributed. IEEE Transactions on Neural Networks, 21, 169–175.

    Article  Google Scholar 

  • Zhang, X. M., & Han, Q. L. (2009). A delay decomposition approach to control of networked control systems. European Journal of Control, 5, 523–533.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H. T., Yu, T., Sang, J. P., & Zou, X. W. (2014). Dynamic fluctuation model of complex networks with weight scaling behavior and its application to airport networks. Physica A, 39, 500–599.

    Google Scholar 

  • Zheng, M. W., Li, L. X., Peng, H. P., et al. (2017). Finite-time projective synchronization of memristor-based delay fractional-order neural networks. Nonlinear Dynamics, 89, 2641–2655.

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, M. W., Li, L. X., Peng, H. P., et al. (2018). Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks. Communications in Nonlinear Science and Numerical Simulation, 59, 2462–2478.

    Article  MathSciNet  Google Scholar 

  • Zhu, J. W., & Yang, G. H. (2016). Robust dynamic output feedback synchronization for complex dynamical networks with disturbances. Neurocomputing, 175, 287–292.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by applied fundamental research (Major frontier projects) of Sichuan Province (16JC0314). The authors would like to thank the editor and anonymous reviewers for their many helpful comments and suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nannan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Liu, Z. & Chen, L. Finite-Time \({H_\infty }\) Synchronization for Complex Dynamical Networks with Markovian Jump Parameter. J Control Autom Electr Syst 30, 75–84 (2019). https://doi.org/10.1007/s40313-018-00428-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-00428-9

Keywords

Navigation