Skip to main content
Log in

Sensorless SVM-Direct Torque Control for Induction Motor Drive Using Sliding Mode Observers

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents an improved direct torque control strategy (DTC) for induction motor drive. The conventional DTC suffers from high torque ripples and variable switching frequency due to utilizing hysteresis comparators. The presented technique uses the space vector modulation in order to cover DTC drawbacks and reduce high torque and flux ripples by maintaining a fixed switching frequency. An anti-windup proportional integral controller is considered for the outer speed loop. Furthermore, the control design is combined with dual sliding mode observers for speed/flux and load torque estimation in order to improve the control performances and reduce different uncertainties. Moreover, they minimize the number of sensors to decrease the cost and increase the reliability of the system. The effectiveness of the sensorless method has been investigated by simulation and experimental validation using MATLAB/Simulink software with real time interface based on dSpace 1104 bored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Alsofyani, I. M., & Idris, N. R. N. (2016). Simple flux regulation for improving state estimation at very low and zero speed of a speed sensorless direct torque control of an induction motor. IEEE Transactions on Power Electronics, 31(4), 3027–3035. doi:10.1109/TPEL.2015.2447731.

    Article  Google Scholar 

  • Ammar, A., Bourek, A., & Benakcha, A. (2015). Modified load angle Direct Torque Control for sensorless induction motor using sliding mode flux observer. In 2015 4th international conference on electrical engineering (ICEE) (pp. 1–6). IEEE. doi:10.1109/INTEE.2015.7416602.

  • Aurora, C., & Ferrara, A. (2007). A sliding mode observer for sensorless induction motor speed regulation. International Journal of Systems Science, 38(11), 913–929. doi:10.1080/00207720701620043.

    Article  MathSciNet  MATH  Google Scholar 

  • Azcue-Puma, J. L., Filho, A. J. S., & Ruppert, E. (2014). The fuzzy logic-based stator-flux-oriented direct torque control for three-phase asynchronous motor. Journal of Control, Automation and Electrical Systems, 25(1), 46–54. doi:10.1007/s40313-013-0091-5.

    Article  Google Scholar 

  • Barambones, O., & Alkorta, P. (2014). Position control of the induction motor using an adaptive sliding-mode controller and observers. IEEE Transactions on Industrial Electronics, 61(12), 6556–6565. doi:10.1109/TIE.2014.2316239.

    Article  Google Scholar 

  • Casadei, D., Profumo, F., Serra, G., & Tani, A. (2002). FOC and DTC: Two viable schemes for induction motors torque control. IEEE Transactions on Power Electronics, 17(5), 779–787. doi:10.1109/TPEL.2002.802183.

    Article  Google Scholar 

  • Costa, B. L. G., Angélico, B. A., Goedtel, A., Castoldi, M. F., & Graciola, C. L. (2015). Differential evolution applied to DTC drive for three-phase induction motors using an adaptive state observer. Journal of Control, Automation and Electrical Systems, 26(4), 403–420. doi:10.1007/s40313-015-0188-0.

    Article  Google Scholar 

  • Habetler, T. G., Profumo, F., Pastorelli, M., & Tolbert, L. M. (1992). Direct torque control of induction machines using space vector modulation. IEEE Transactions on Industry Applications, 28(5), 1045–1053. doi:10.1109/28.158828.

    Article  Google Scholar 

  • Habibullah, M., Lu, D. D., Xiao, D., & Rahman, M. F. (2016). A simplified finite-state predictive direct torque control for induction motor drive. IEEE Transactions on Industrial Electronics, 63(6), 3964–3975. doi:10.1109/TIE.2016.2519327.

    Article  Google Scholar 

  • Kumsuwan, Y., Premrudeepreechacharn, S., & Toliyat, H. A. (2008). Modified direct torque control method for induction motor drives based on amplitude and angle control of stator flux. Electric Power Systems Research, 78(10), 1712–1718. doi:10.1016/j.epsr.2008.02.015.

    Article  Google Scholar 

  • Lascu, C., Boldea, I., & Blaabjerg, F. (2000). A modified direct torque control for induction motor sensorless drive. IEEE Transactions on Industry Applications, 36(1), 122–130. doi:10.1109/28.821806.

    Article  Google Scholar 

  • Lascu, C., Boldea, I., & Blaabjerg, F. (2009). A class of speed-sensorless sliding-mode observers for high-performance induction motor drives. IEEE Transactions on Industrial Electronics, 56(9), 3394–3403. doi:10.1109/TIE.2009.2022518.

    Article  Google Scholar 

  • Leandro, B., Costa, G., Augusto, B., Alessandro, A., Favoretto, M., Clayton, C., et al. (2015). Differential evolution applied to DTC drive for three-phase induction motors using an adaptive state observer. Journal of Control, Automation and Electrical Systems,. doi:10.1007/s40313-015-0188-0.

    Google Scholar 

  • Lee, H., & Lee, J. (2013). Design of iterative sliding mode observer for sensorless PMSM control. IEEE Transactions on Control Systems Technology, 21(4), 1394–1399. doi:10.1109/TCST.2012.2199493.

  • Maes, J., & Melkebeek, J. A. (2000). Speed-sensorless direct torque control of induction motors using an adaptive flux observer. IEEE Transactions on Industry Applications, 36(3), 778–785. doi:10.1109/28.845053.

  • Netal, V., Panda, A., & Singh, S. P. (2016). A three-level fuzzy-2 DTC of induction motor drive using SVPWM. IEEE Transactions on Industrial Electronics, 63(3), 1467–1479. doi:10.1109/TIE.2015.2504551.

    Article  Google Scholar 

  • Oliveira, C. M. R., & Aguiar, M. L. (2016). Vector control of induction motor using an integral sliding mode controller with anti-windup. Journal of Control, Automation and Electrical Systems,. doi:10.1007/s40313-016-0228-4.

    Google Scholar 

  • Orlowska-Kowalska, T., Tarchala, G., & Dybkowski, M. (2014). Sliding-mode direct torque control and sliding-mode observer with a magnetizing reactance estimator for the field-weakening of the induction motor drive. Mathematics and Computers in Simulation, 98, 31–45. doi:10.1016/j.matcom.2013.05.012.

    Article  MathSciNet  MATH  Google Scholar 

  • Ren, Y., & Zhu, Z. Q. (2015). Enhancement of steady-state performance in direct-torque-controlled dual three-phase permanent-magnet synchronous machine drives with modified switching table. IEEE Transactions on Industrial Electronics, 62(6), 3338–3350. doi:10.1109/TIE.2014.2376881.

    Google Scholar 

  • Rodriguez, J., Pontt, J., Silva, C., Kouro, S., & Miranda, H. (2004). A novel direct torque control scheme for induction machines with space vector modulation. In IEEE 35th annual power electronics specialists conference (IEEE Cat. No. 04CH37551), Vol. 5, pp. 1392–1397. doi:10.1109/PESC.2004.1355626

  • Saberi, H., Feyzi, M., Sharifian, M. B. B., & Sabahi, M. (2014). Improved sensorless direct torque control method using adaptive flux observer. IET Power Electronics, 7(7), 1675–1684. doi:10.1049/iet-pel.2013.0390.

    Article  Google Scholar 

  • Singh, B., Jain, S., & Dwivedi, S. (2013). Torque ripple reduction technique with improved flux response for a direct torque control induction motor drive. IET Power Electronics, 6(2), 326–342. doi:10.1049/iet-pel.2012.0121.

    Article  Google Scholar 

  • Smith, A. N., Gadoue, S. M., & Finch, J. W. (2016). Improved rotor flux estimation at low speeds for torque MRAS-based sensorless induction motor drives. IEEE Transactions on Energy Conversion, 31(1), 270–282. doi:10.1109/TEC.2015.2480961.

    Article  Google Scholar 

  • Uddin, M., & Hafeez, M. (2012). FLC-based DTC scheme to improve the dynamic performance of an IM drive. IEEE Transactions on Industry Applications, 48(2), 823–831. doi:10.1109/TIA.2011.2181287.

    Article  Google Scholar 

  • Yang, M., Tang, S., & Xu, D. (2015). Comments on “Antiwindup strategy for PI-type speed controller”. IEEE Transactions on Industrial Electronics, 62(2), 1329–1332. doi:10.1109/TIE.2014.2363626.

    Article  Google Scholar 

  • Yin, Z., Zhang, Y., Du, C., Liu, J., Sun, X., & Zhong, Y. (2016). Research on anti-error performance of speed and flux estimation for induction motors based on robust adaptive state observer. IEEE Transactions on Industrial Electronics, 63(6), 3499–3510. doi:10.1109/TIE.2016.2524414.

    Article  Google Scholar 

  • Zhang, C., He, J., Jia, L., Xu, C., & Xiao, Y. (2015). Virtual line-shafting control for permanent magnet synchronous motor systems using sliding-mode observer. IET Control Theory & Applications, 9(3), 456–464. doi:10.1049/iet-cta.2014.0477.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkarim Ammar.

Appendix

Appendix

The parameters of the three-phase induction motor, employed for simulation and real implementation, in SI units are:

1.1 kW, 50 Hz, p = 2, \(R_\mathrm{s} = 6.75\,\Omega \), \(R_\mathrm{r} = 6.21\,\Omega \), \(L_\mathrm{s} = L_\mathrm{r} = 0.5192\,\hbox { H}\), \(M_\mathrm{sr} = 0.4957\,\hbox {H}\), \(f_\mathrm{r} = 0.002 \hbox {SI}\), \(\hbox {J} = 0.01240 \hbox { kg\, m}^{2}\)

The control parameters of simulation and real-time implementation:

Parameters

Values

PI speed controller

\(K_\mathrm{p}= 0.1\); \(K_\mathrm{i}=0.234\)

PI flux controller

\(K_\mathrm{p}= 7000\); \(K_\mathrm{i}=4000\)

PI torque controller

\(K_\mathrm{p}= 125\); \(K_\mathrm{i}=10\)

Sliding mode flux observer gains

\(K=2000\)

Sliding mode flux observer PI controller

\(K_\mathrm{p}= 1\); \(K_\mathrm{i}=1000\)

Sliding mode load torque observer gains

\(\lambda _{1}=150\); \(\lambda _{2}=600\)

\(K_{1}=150;\) \(K_{2}=600\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, A., Bourek, A. & Benakcha, A. Sensorless SVM-Direct Torque Control for Induction Motor Drive Using Sliding Mode Observers. J Control Autom Electr Syst 28, 189–202 (2017). https://doi.org/10.1007/s40313-016-0294-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0294-7

Keywords

Navigation