Skip to main content

Advertisement

Log in

State of the Art and Conceptual Design of Robotic Solutions for In Situ Hard Coating of Hydraulic Turbines

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Hydropower turbine’s blades are constantly exposed to abrasion and cavitation phenomena, demanding regular maintenance for flow stability. Hard coating techniques by thermal aspersion are used to reduce the mechanical wear, thus increasing blade’s life cycle, and turbine efficiency. Currently, applying a new coating layer requires turbine disassembling and recalibration. EMMA is a robotic system to perform hard coating by thermal spray on hydraulic turbine blades within the turbine environment, i.e., hard coating application to an installed blade, significantly reducing the turbine downtime. This document is a study of the state of the art of in situ hydropower turbine robotic systems and describes the conceptual designs for EMMA. The results outlines the next steps for EMMA and future projects in the same area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://www.hydropower.org/.

References

  • Armada, M., De Santos, P. G., Jiménez, M. A., & Prieto, M. (2003). Application of clawar machines. The International Journal of Robotics Research, 22(3–4), 251–264.

    Article  Google Scholar 

  • Balaguer, C., Gimenez, A., & Abderrahim, M. (2002). Roma robots for inspection of steel based infrastructures. Industrial Robot: An International Journal, 29, 246–251.

    Article  Google Scholar 

  • Bibuli, M., Caccia, M., & Lapierre, L. (2007). Path-following algorithms and experiments for an autonomous surface vehicle. IFAC Proceedings Volumes (IFAC-PapersOnline), 7(Part 1), 81–86. doi:10.1002/rob.

    Article  MATH  Google Scholar 

  • Bonacorso, N. G., Goncalves, J. A. A., & Dutra, J. C. (2006). Automation of the processes of surface measurement and of deposition by welding for the recovery of rotors of large-scale hydraulic turbines. Journal of Materials Processing Technology, 179(1–3), 231–238.

    Article  Google Scholar 

  • Brennen, C. E. (2013). Cavitation and bubble dynamics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Chu, B., Jung, K., Han, C., & Hong, D. (2010). A survey of climbing robots: Locomotion and adhesion. International Journal of Precision Engineering and Manufacturing, 11(4), 633–647.

    Article  Google Scholar 

  • Elkmann, N., Felsch, T., & Forster, T. (2010). Robot for rotor blade inspection. In 2010 1st international conference on applied robotics for the power industry (CARPI) (pp. 1–5). IEEE.

  • Escaler, X., Egusquiza, E., Farhat, M., Avellan, F., & Coussirat, M. (2006). Detection of cavitation in hydraulic turbines. Mechanical Systems and Signal Processing, 20(4), 983–1007.

    Article  Google Scholar 

  • Faina, A., Souto, D., Deibe, A., Lopez-Pena, F., Duro, R. J., & Fernandez, X. (2009). Development of a climbing robot or grit blasting operations in shipyards. In Proc of the 2009 IEEE international conference on robotics and automation (pp. 200–205).

  • Goldemberg, J., & Lucon, O. (2007). Energia e meio ambiente no Brazil. Estudos Avançados, 21(59), 7–20.

  • Hillenbrand, C., Schmidt, D., & Berns, K. (2008). Cromsci—A climbing robot with multiple sucking chambers for inspection tasks. In WSPC proceedings.

  • Jeon, M., Kim, B., Park, S., & Hong, D. (2012). Maintenance robot for wind power blade cleaning. Seoul: Department of Mechanical Engineering, Korea University.

  • Kim, H., Kim, D., Yang, H., Lee, K., Seo, K., Chang, D., et al. (2008). Development of a wall-climbing robot using a tracked wheel mechanism. Journal of Mechanical Science and Technology, 22(8), 1490–1498.

    Article  Google Scholar 

  • Kim, J., Lee, K. Y., Kim, T., Lee, D., Lee, S., Lim, C., & Kang, S. W. (2004). Rail running mobile welding robot RRX3 for double hull ship structures. In Proc of the 6th international conference on climbing and walking robots (pp. 1061–1069).

  • Kuroda, S., Kawakita, J., Watanabe, M., & Katanoda, H. (2008). Warm spraying—a novel coating process based on high-velocity impact of solid particles. Science and Technology of Advanced Materials, 9(3), 033002. doi:10.1088/1468-6996/9/3/033002.

  • Machines, I. C. (2015). The climber. International Climbing Machines (ICM) website. http://www.icm.cc/climber.php. Accessed on 30 Mar 2015.

  • Maempel, J., Koch, T., Koehring, S., Obermaier, A., & Witte, H. (2009). Concept of a modular climbing robot. In IEEE symposium on industrial electronics and applications (ISIEA).

  • Ren, T., Kwok, N., Liu, D., & Huang, S. (2008). Path planning for a robotic arm sand-blasting system. In ICIA 2008. International conference on information and automation, 2008 (pp. 1067–1072). IEEE.

  • Santa, J., Espitia, L., Blanco, J., Romo, S., & Toro, A. (2009). Slurry and cavitation erosion resistance of thermal spray coatings. Wear, 267(1), 160–167.

    Article  Google Scholar 

  • Wu, J., Fang, H., Yoon, S., Kim, H., & Lee, C. (2006). The rebound phenomenon in kinetic spraying deposition. Scripta Materialia, 54(4), 665–669.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Energia Sustentável do Brazil and the ANEEL R&D program (contract COPPETEC/UFRJ JIRAU 09/15 6631-0003/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renan S. Freitas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, R.S., Silva, G.A.C., Soares, E.E.M. et al. State of the Art and Conceptual Design of Robotic Solutions for In Situ Hard Coating of Hydraulic Turbines. J Control Autom Electr Syst 28, 105–113 (2017). https://doi.org/10.1007/s40313-016-0287-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0287-6

Keywords

Navigation