Skip to main content
Log in

Gait Generation for the Compass-Type Biped Robot on General Irregular Grounds Via a New Blending Method of Discrete Mechanics and Nonlinear optimization

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper develops a unified gait generation method based on discrete mechanics and nonlinear optimization technique for the compass-type biped robot on general irregular grounds. First, we derive the models of continuous-time/discrete-time compass-type biped robot (DCBR/CCBR). Next, a discrete gait generation problem on an irregular ground for the DCBR as a finite-dimensional nonlinear optimal control problem is formulated, and a solving method of it with the sequential quadratic programming is presented. Then, a transformation method of a discrete-time input into a continuous-time one is shown. Finally, some numerical simulations are illustrated to verify the effectiveness of our new approach. As a result, it is confirmed that the new method can generate stable gaits for the CCBR on various irregular grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bloch, A. M., Leok, M., Marsden J. E., & Zenkov, D. V. (2005). Controlled Lagrangians and stabilization of the discrete cart-pendulum system. In Proceedings of 44th IEEE CDC-ECC (pp. 6579–6584). Seville.

  • Bloch, A. M., Leok, M., Marsden, J. E., & Zenkov, D. V. (2006). Controlled lagrangians and potential shaping for stabilization of the discrete mechanical systems. In Proceedings of 45th IEEE CDC (pp. 3333–3338) San Diego.

  • Collins, S. H., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.

    Article  Google Scholar 

  • Erbatur, K., & Kurt, O. (2009). Natural ZMP trajectories for biped robot reference generation. IEEE Transactions on Industrial Electronics, 56(3), 835–845.

    Article  Google Scholar 

  • Garcia, M., Chatterjee, A., Ruina, A., & Coleman, M. J. (1998). The simplest walking model: Stability, complexity, and scaling. ASME Journal of Biomechanical Engineering, 120(2), 281–288.

    Article  Google Scholar 

  • Goswami, A., Espiau, B., & Keramane, A. (1997). Limit Cycles in a passive compass gait biped and passivity mimicking control laws. Autonomous Robots, 4, 273–286.

    Article  Google Scholar 

  • Goswami, A., Thuilot, B., & Espiau, B. (1998). A study of the passive gait of a compass-like biped robot: Symmetry and chaos. International Journal of Robotics Research, 17(12), 1282–1301.

    Article  Google Scholar 

  • Grizzle, J. W., Abba, G., & Plestan, F. (2001). Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transaction on Automatic Control, 46(1), 51–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurwitz, C. B. (1989). Sequential quadratic programming methods based on approximating a projected Hessian matrix. SIAM Journal on Scientific and Statistical Computing, 10(4), 631–653.

    Article  MathSciNet  MATH  Google Scholar 

  • Hass, J., Herrmann, J. M., & Geisel, T. (2006). Optimal mass distribution for passivity-based bipedal robots. International Journal of Robotics Research, 25(11), 1087–1098.

    Article  Google Scholar 

  • Hobbelen, D. G. E., & Wisse, M. (2008). Swing-leg retraction for limit cycle walkers improves disturbance rejection. IEEE Transactions on Robotics, 24(2), 377–389.

    Article  Google Scholar 

  • Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., et al. (2001). Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 17(3), 280–289.

    Article  Google Scholar 

  • Junge, O., Marsden, J. E., & Ober-Blöbaum, S. (2005). Discrete mechanics and optimal control. In Proceedings of 16th IFAC World Congress, Praha, Paper No. We-M14-TO/3.

  • Kai, T., Shintani, T. (2009). Discrete gait generation for the compass-type biped robot modeled by discrete mechanics. In Proceedings of NOLTA 2010 (pp. 434–437). Krakow.

  • Kai, T., Shintani, T. (2011). A gait generation method for the compass-type biped robot on slopes via discrete mechanics. In Proceedings of IEEE CDC 2011 (pp. 675–681) Orlando.

  • Kai, T., Shintani, T. (2011). Discrete mechanics approach to gait generation for the compass-type biped robot. In Proceedings of IFAC World Congress 2011. (pp. 434–437) Milano.

  • Kai, T., Shintani, T. (2012). Gait generation on periodically unlevel grounds for the compass-type biped robot via discrete mechanics. In Proceedings of IEEE MSC 2012 (pp. 1374–1381) Dubrovnik.

  • Kai, T. (2012). Control of the cart-pendulum system based on discrete mechanics-part I : Theoretical analysis and stabilization control. IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences, E95–A(2), 525–533.

    Article  Google Scholar 

  • Kai, T., & Bito, K. (2014). A new discrete mechanics approach to swing-up control of the cart-pendulum system. Communications in Nonlinear Science and Numerical Simulation, 19, 230–244.

    Article  MathSciNet  Google Scholar 

  • Kai, T., Bito, K., & Shintani, T. (2012). Control of the cart-pendulum system based on discrete mechanics-part II : Transformation to continuous-time inputs and experimental verification. IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences, E95–A(2), 534–541.

    Article  Google Scholar 

  • Kane, C., Marsden, J. E., Ortiz, M., & West, M. (2000). Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems. International Journal for Numerical Methods in Engineering, 49, 1295–1325.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J. E., Patrick, G. W., & Shkoller, S. (1998). Multisymplectic geometry, variational integrators and nonlinear PDEs. Communications in Mathematical Physics, 199, 351–395.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J. E., & West, M. (2001). Discrete mechanics and variational integrators. Acta Numerica, 10, 3571–5145.

    Article  MathSciNet  Google Scholar 

  • McGeer, T. (1990). Passive Dynamic Walking. The International Journal of Robotics Research, 9(2), 62–82.

    Article  Google Scholar 

  • Miller, W. T. (1994). Real-time neural network control of a biped walking robot. IEEE Control Systems Magazine, 14(1), 41–48.

    Article  Google Scholar 

  • Morimoto, J., & Atkeson, C. G. (2007). Learning biped locomotion: Application of poincare-map-based reinforcement learning. IEEE Robotics and Automation Magazine, 14(2), 41–51.

    Article  Google Scholar 

  • Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47, 79–91.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Berlin: Springer.

    MATH  Google Scholar 

  • Sardain, P., & Bessonnet, G. (2004). Forces acting on a biped robot center of pressure: zero moment point. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 34(5), 630–637.

    Article  Google Scholar 

  • Taga, G., Yamaguchi, Y., & Shimizu, H. (1991). Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics, 65, 147–159.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Kai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kai, T., Shibata, T. Gait Generation for the Compass-Type Biped Robot on General Irregular Grounds Via a New Blending Method of Discrete Mechanics and Nonlinear optimization. J Control Autom Electr Syst 26, 484–492 (2015). https://doi.org/10.1007/s40313-015-0192-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0192-4

Keywords

Navigation