Skip to main content
Log in

A Robust Bearing Fault Detection and Diagnosis Technique for Brushless DC Motors Under Non-stationary Operating Conditions

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Rolling element bearing defects are among the main reasons for the breakdown of electrical machines, and therefore, early diagnosis of these is necessary to avoid more catastrophic failure consequences. This paper presents a novel approach for identifying rolling element bearing defects in brushless DC motors under non-stationary operating conditions. Stator current and lateral vibration measurements are selected as fault indicators to extract meaningful features, using a discrete wavelet transform. These features are further reduced via the application of orthogonal fuzzy neighbourhood discriminative analysis. A recurrent neural network is then used to detect and classify the presence of bearing faults. The proposed system is implemented and tested in simulation on data collected from an experimental setup, to verify its effectiveness and reliability in accurately detecting and classifying the various faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abed, W., Sharma, K., & Sutton, R. (2014). Intelligent fault diagnosis of an unmanned underwater vehicle electric thruster motor. The Global Event for Undersea Defence and Technology Liverpool, UK, 10–12 June.

  • Abed, W., Sharma, K., & Sutton, R. (2014). Diagnosis of bearing fault of brushless DC motor based on dynamic neural network and orthogonal fuzzy neighborhood discriminant analysis. In 10 International Conference of the United Kingdom. Automatic Control Council, Loughborough University, UK. doi:10.1109/CONTROL.2014.6915170.

  • Al-Timemy, H., Bugmann, G., Escudero, J., & Outram, N. (2013). Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. IEEE Journal of Biomedical and Health Informatics, 17(3), 608–618.

    Article  Google Scholar 

  • Alok, S., Kuldip, K., & Godfrey, C. (2006). Class-dependent PCA, MDC and LDA: A combined classifier for pattern classification, Pattern Recognition, 39(7), 1215–1229.

    Article  MATH  Google Scholar 

  • Antonino, J., Aviyente, S., Strangas, G., & Riera-Guasp, M. (2013). Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors. IEEE Transactions on Industrial Informatics, 9(1), 100–108.

    Article  Google Scholar 

  • Bediaga, I., Mendizabal, X., Arnaiz, A., & Munoa, J. (2013). Ball bearing damage detection using traditional signal processing algorithms. IEEE Instrumentation and Measurement Magazine, 16(2), 20–25.

    Article  Google Scholar 

  • Brown, D., Georgoulas, G., Bae, H., & Vachtsevanos, G. (2009). Particle filter based anomaly detection for aircraft actuator systems. In IEEE Aerospace Conference (pp. 1–13). doi:10.1109/AERO.2009.4839659.

  • Camarena, D., Valtierra, M., Garcia, A., Osornio, A., & Romero, J. (2014). Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors. The Scientific World Journal. doi:10.1155/2014/908140.

  • Delgado, M., Cusido, J., & Romeral, L. (2011). Bearings fault detection using inference tools. In Tech. doi:10.5772/22696.

  • Goharrizi, Y., & Sepehri, N. (2010). A wavelet-based approach to internal seal damage diagnosis in hydraulic actuators. IEEE Transactions on Industrial Electronics, 57(5), 1755–1763.

    Article  Google Scholar 

  • Howard, D., Mark, B., & Martin, H. (2006). Neural network toolbox for use with MATLAB. The Mathowrks User’s Guide, Version 5.

  • Hyun, C., Knowles, J., Fadali, S., & Kwon, L. (2010). Fault detection and isolation of induction motors using recurrent neural networks and dynamic Bayesian modeling. IEEE Transactions on Control Systems Technology, 18(2), 430–437.

    Article  Google Scholar 

  • Immovilli, F., Bellini, A., Rubini, R., & Tassoni, C. (2010). Diagnosis of bearing faults in induction machines by vibration or current signals: A critical comparison. IEEE Transactions on Industry Applications. doi:10.1109/08IAS.2008.26.

  • Jia, G., Yuan, S., & Tang, C. (2011). Fault diagnosis of roller bearing based on PCA and multi-class support vector machine. Computer and Computing Technologies in Agriculture. Berlin Heidelberg: Springer. doi:10.1007/978-3-642-18369-0_22.

  • Jin, X., Zhao, M., Chow, T., & Pecht, M. (2013). Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Transactions on Industrial Electronics, 61(5), 1–11.

    Google Scholar 

  • Jun, H., Jianzhong, Z., Ming, C., & Zheng, W. (2013). Fault diagnosis of mechanical unbalance for permanent magnet synchronous motor drive system under nonstationary condition. In: IEEE energy conversion and exposition conference, USA. doi:10.1109/ECCE.2013.6647169.

  • Kankar, K., Sharma, C., & Harsha, P. (2011). Fault diagnosis of ball bearings using continuous wavelet transform. Applied Soft Computing, 11(2), 2300–2312.

    Article  Google Scholar 

  • Khushaba, N., Al-Ani, A., & Al-Jumaily, A. (2010). Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control. IEEE Transactions on Biomedical Engineering, 57(6), 1410–1419.

    Article  Google Scholar 

  • Mahammed, A., & Hiyama, T. (2011). Fault classification based artificial intelligent methods of induction motor. International Journal of Innovative Computing, Information and Control, 7(9), 5477–5493.

    Google Scholar 

  • Michie, D., Spiegelhalter, D., & Taylor, C. (2009). Machine learning, neural and statistical classification (1st ed.). Chichester: Ellis Harwood.

    Google Scholar 

  • Patil, M., Mathew, J., Rajendrakumar, P., & Desai, S. (2010). A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing. International Journal of Mechanical Sciences, 52(9), 1193–1201.

    Article  Google Scholar 

  • Phinyomark, A., Nuidod, A., Phukpattaranont, P., & Limsakul, C. (2012). Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification. Electrical and Electronics Engineering, 122(6), http://www.eejournal.ktu.lt/index.phpelt/article/view/1816.

  • Prieto, D., Cirrincione, G., Espinosa, G., Ortega, A., & Henao, H. (2013). Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Transactions on Industrial Electronics, 60(8), 3398– 3407.

    Article  Google Scholar 

  • Rao, B., Pai, S., & Nagabhushana, T. (2012). Failure diagnosis and prognosis of rolling-element bearings using artificial neural networks: A critical overview. IOP Publishing, Journal of Physics: Conference Series, 364(1), 1–28.

    Google Scholar 

  • Sadough Vanini, Z. N., Khorasani, K., & Meskin, N. (2014). Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach. Information Science, 259, 234–251.

  • Safavian, L., Kinsner, W., & Turanli, H. (2005). Aquantitative comparison of different mother wavelets for characterizing transients in power systems. In IEEE conference on Electrical and Computer Engineering, (pp. 1461–1464) doi:10.1109/CCECE.2005.1557253.

  • Samanta, B., Al-Balushi, R., & Al-Araimi, A. (2004). Bearing fault detection using artificial neural networks and genetic algorithm. Journal on Applied Signal Processing, 2004(3), 366–377.

    Article  Google Scholar 

  • Seshadrinath, J., Singh, B., & Panigrahi, K. (2014). Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets. IEEE Transactions on Power Electronics, 29(2), 936–945.

    Article  Google Scholar 

  • Seshadrinath, J., Singh, B., & Panigrahi, K. B. (2012). Incipient turn fault detection and condition monitoring of induction machine using analytical wavelet transform. In IEEE Industry Applications Society Annual Meeting, USA. doi:10.1109/IAS.2012.6374026.

  • Subhasis, N., Hamid, T., & Xiaodong, L. (2005). Condition monitoring and fault diagnosis of electrical motors a review. IEEE Transactions on Energy Conversion, 20(4), 719–729.

    Article  Google Scholar 

  • Sugumaran, V., & Ramachandran, I. (2011). Effect of number of features on classification of roller bearing faults using SVM and PSVM. Expert Systems with Applications, 38(4), 4088–4096.

    Article  Google Scholar 

  • Tavner, J. (2008). Review of condition monitoring of rotating electrical machines. Electric Power Applications, IET, 2(4), 215–247.

    Article  Google Scholar 

  • Trajin, B., Regnier, J., & Faucher, J. (2009). Comparison between stator current and estimated mechanical speed for the detection of bearing wear in asynchronous drives. IEEE Transactions on Industrial Electronics, 56(11), 4700–4709.

    Article  Google Scholar 

  • Vachtsevanos, G., & Wang, P. (2001). Fault prognosis using dynamic wavelet neural networks. EEE Systems Readiness Technology Conference, USA. doi:10.1109/AUTEST.2001.949467.

  • Wang, T., Liang, M., Li, J., & Cheng, W. (2014). Rolling element bearing fault diagnosis via fault characteristic order analysis. Mechanical Systems and Signal Processing, 45(1), 139–153.

    Article  Google Scholar 

  • Wu, Y., Lai, H., & Lin, S. (2013). Feature extraction for bearing detection identification under variable rotation speed. In 20th International Congress on sound and vibration, Thailand. http://www.icsv20.org/index.php?va=viewpage&vaid=175&vasort=title.

  • Xu, Z., Xuan, J., Shi, T., Wu, B., & Hu, Y. (2009). Application of a modified fuzzy ARTMAP with feature-weight learning for the fault diagnosis of bearing. Expert Systems with Applications, 36(6), 9961–9968.

    Article  Google Scholar 

  • Xuhong, W., & Yigang, H. (2005). Diagonal recurrent neural network based on-line stator winding turn fault detection for induction motors. Electrical Machines and Systems, Proceedings of the Eighth International. doi:10.1109/ICEMS.2005.202972.

  • Yang, H., Mathew, J., & Ma, L. (2002). Intelligent diagnosis of rotating machinery faults-a review. In 3rd Asia-Pacific conference on systems integrity and maintenance, Australia. http://eprints.qut.edu.au/17942/1/17942.pdf.

  • Yilmaz, S., & Ayaz, E. (2009). Adaptive neuro-fuzzy inference system for bearing fault detection in induction motors using temperature, current, vibration data. EUROCON conference, Russia. doi:10.1109/EURCON.2009.5167779.

  • Yusuf, A., Brown, J., Mackinnon, A., & Papanicolaou, R. (2013). Application of dynamic neural networks with exogenous input to industrial conditional monitoring. International joint conference on neural networks, USA. 1–8. doi:10.1109/IJCNN.2013.6706762.

  • Zhang, Y., Zuo, H., & Bai, F. (2013). Classification of fault location and performance degradation of a roller bearing. Measurement, 46(3), 1178–1189.

    Article  Google Scholar 

  • Zhenyu, Y., Uffe, M., Gerfulf, P., Morten, R., & hakon, B. (2009). A study of rolling-element bearing fault diagnosis using motor’s vibration and current signatures, preprints of the 7th IFAC symposium on fault detection, supervision and safety of technical processes, Spain. doi:10.3182/20090630-4-ES-2003.00059.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wathiq Abed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, W., Sharma, S., Sutton, R. et al. A Robust Bearing Fault Detection and Diagnosis Technique for Brushless DC Motors Under Non-stationary Operating Conditions. J Control Autom Electr Syst 26, 241–254 (2015). https://doi.org/10.1007/s40313-015-0173-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0173-7

Keywords

Navigation