Skip to main content
Log in

Active Vibration Control of Flexible Beams Based on Infinite-Dimensional Lyapunov Stability Theory: An Experimental Study

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Flexible beams are parts of lighter structures and flexible manipulators, which possess numerous advantages. However, the flexibility leads to a vibration problem. This paper presents an experimental study of active vibration control of flexible beams. The beam assumed to behave according to the Euler–Bernoulli theory is modeled by a partial differential equation. The control objective is to suppress the vibration of the beam. Based on the Lyapunov stability theory of infinite-dimension systems, a control law is directly derived without using any approximated finite-dimensional model of the beam. The success of the controller is experimentally demonstrated on a cantilever aluminum beam with a laser displacement sensor and a piezoelectric actuator. Experimental results show that the controller effectively suppresses the vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beer, F. P., Johnston, E. R., DeWolf, J., & Mazurek, D. F. (2014). Mechanics of materials. New York, NY: McGraw-Hill.

    Google Scholar 

  • Chen, L.-X., & Sun, J.-Q. (2014). Multi-objective optimal design and experimental validation of tracking control of a rotating flexible beam. Journal of Sound and Vibration. doi:10.1016/j.jsv.2014.05.004.

  • Dadfarnia, M., Jalili, N., Xian, B., & Dawson, D. M. (2004). A Lyapunov-based piezoelectric controller for flexible Cartesian robot manipulators. Journal of Dynamic Systems, Measurement, and Control, 126, 347–358.

    Article  Google Scholar 

  • Dafang, W., Liang, H., Bing, P., Yuewu, W., & Shuang, W. (2014). Experimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric intelligent material. Aerospace Science and Technology, 37, 10–19.

    Article  Google Scholar 

  • Feliu, V., Pereira, E., & Díaz, I. M. (2014). Passivity-based control of single-link flexible manipulators using a linear strain feedback. Mechanism and Machine Theory, 71, 191–208.

    Article  Google Scholar 

  • Fuller, C. C. (1996). Active control of vibration. San Diego, CA: Academic Press.

    Google Scholar 

  • Gagg F, L. A., da Conceicao, S. M., Vasques, C. H., de Abreu, G. L. C. M., Lopes, V, Jr, & Brennan, M. J. (2014). Experimental identification and control of a cantilever beam using ERA/OKID with a LQR. Journal of Control, Automation and Electrical Systems, 25, 161–173.

    Article  Google Scholar 

  • Ge, S. S., Lee, T. H., Zhu, G., & Hong, F. (2001). Variable structure control of a distributed-parameter flexible beam. Journal of Robotic Systems, 18, 17–27.

    Article  MATH  Google Scholar 

  • Gosavi, S. V., & Kelkar, A. G. (2004). Modelling, identification, and passivity-based robust control of piezo-actuated flexible beam. Journal of Vibration and Acoustics, 126, 260–271.

    Article  Google Scholar 

  • Hu, Q. (2012). Robust adaptive sliding mode attitude control and vibration damping of flexible spacecraft subject to unknown disturbance and uncertainty. Transactions of the Institute of Measurement and Control, 34, 436–447.

    Article  Google Scholar 

  • Jnifene, A. (2007). Active vibration control of flexible structures using delayed position feedback. Systems and Control Letters, 56, 215–222.

    Article  MATH  MathSciNet  Google Scholar 

  • Petersen, I. R., & Pota, H. R. (2003). Minimax LQR optimal control of a flexible beam. Control Engineering Practice, 11, 1273–1287.

    Article  Google Scholar 

  • Phan, V. P., Goo, N. S., Yoon, K.-J., & Hwang, D.-S. (2012). Lookup table control method for vibration suppression of a flexible manipulator with optimization of the minimum settling time and energy consumption. Asian Journal of Control, 14, 693–706.

    Article  Google Scholar 

  • Preumont, A. (2004). Vibration control of active structures. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Qiu, Z., Han, J., Zhang, X., Wang, Y., & Wu, Z. (2009). Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator. Journal of Sound and Vibration, 326, 438–455.

    Article  Google Scholar 

  • Shang, Y. F., Xu, G. Q., & Chen, Y. L. (2012). Stability analysis of Euler–Bernoulli beam with input delay in the boundary control. Asian Journal of Control, 14, 186–196.

    Article  MATH  MathSciNet  Google Scholar 

  • Sharma, S. K., Sutton, R., & Tokhi, M. O. (2014). Local model and controller network design for a single-link flexible manipulator. Journal of Intelligent and Robotic Systems, 74, 605–623.

    Article  Google Scholar 

  • Xu, Y., & Ritz, E. (2009). Vision based flexible beam tip point control. IEEE Transactions on Control Systems Technology, 17, 1220–1227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwat Kuntanapreeda.

Appendices

Appendix 1

The following inequalities are used in the subsequent derivation:

$$\begin{aligned}&\frac{u^{2}}{\alpha }+\alpha v^{2}\ge \;|uv|,\quad \forall u,v,\alpha \in R,\quad \forall \alpha >0\end{aligned}$$
(24)
$$\begin{aligned}&\quad \int _0^l {{u}'^{2}(x,t)\mathrm{d}x} \le l^{2}\int _0^l {{u}''^{2}(x,t)\mathrm{d}x} \end{aligned}$$
(25)

First, we derive the condition for \(\beta _0 \) such that \(V(t)>0\). By substituting

$$\begin{aligned} \rho (x)=b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} +2b_\mathrm{p} \rho _\mathrm{p} t_\mathrm{p} S(x) \ge b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} \end{aligned}$$
(26)

and

$$\begin{aligned} EI(x)=EI_\mathrm{b} +EI_\mathrm{p} S(x)\;\ge EI_\mathrm{b} \end{aligned}$$
(27)

into Eq. (17), it gives

$$\begin{aligned} V_{1} (t) \ge \frac{1}{2}b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} \int _{0}^{l} \dot{w}^{2} (x,t)\mathrm{d}x + \frac{1}{2}EI_\mathrm{b} \int _{0}^{l} w^{\prime \prime 2} (x,t)\mathrm{d}x\nonumber \\ \end{aligned}$$
(28)

By using Eqs. (24) and (26), \(V_2 (t)\) which is given in Eq. (19) can be derived as

$$\begin{aligned}&V_{2} (t) \ge - b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} \int _{0}^{l} \left( {\alpha _{1} w^{2} (x,t) + \frac{{\dot{w}^{2} (x,t)}}{{\alpha _{1} }}} \right) \mathrm{d}x \nonumber \\&\quad +\frac{B}{2}\int _{0}^{l} w^{2} (x,t)\mathrm{d}x - C\int _{0}^{l} \left( {\alpha _{2} w^{2} (x,t) + \frac{{\dot{w}^{2} (x,t)}}{{\alpha _{2} }}} \right) \mathrm{d}x\nonumber \\ \end{aligned}$$
(29)

where \(\alpha _1 \) and \(\alpha _2 \) are positive constants. Then, by substituting Eqs. (28) and (29) into Eq. (21) and using Eq. (25), it yields

$$\begin{aligned} V(t)&\ge b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} \left( {1 - 2\frac{{\beta _{0}}}{{\alpha _{1} }}} \right) \int _{0}^{l} \dot{w}^{2} (x,t)\mathrm{d}x \nonumber \\&+ \beta _{0} \left( {\frac{B}{2} - \alpha _{1} b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} - C\alpha _{2} } \right) \int _{0}^{l} w^{2} (x,t)\mathrm{d}x \nonumber \\&+ \left( {\frac{{EI_\mathrm{b} }}{2} - \frac{{\beta _{0} Cl^{2}}}{{\alpha _{2} }}} \right) \int _{0}^{l} w^{\prime \prime 2} (x,t)\mathrm{d}x \end{aligned}$$
(30)

By setting

$$\begin{aligned}&1-2\frac{\beta _0 }{\alpha _1 }>0,\quad \;\frac{B}{2}-\alpha _1 b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} -C\delta _2 >0,\; \nonumber \\&\frac{EI_\mathrm{b} }{2}-\frac{\beta _0 Cl^{2}}{\alpha _2 }>0, \end{aligned}$$
(31)

we obtain \(V(t)>0\). From Eq. (31), we have

$$\begin{aligned}&2\beta _0 <\alpha _1 <\frac{B}{4b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} },\nonumber \\&\frac{2\beta _0 Cl^{2}}{EI_\mathrm{b} }<\alpha _2 <\frac{B}{4C}. \end{aligned}$$
(32)

To assure Eq. (32) which gives \(V(t)>0\), \(\beta _0 \) should be chosen as

$$\begin{aligned} \beta _0 <\min \left\{ {\frac{B}{8b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} },\frac{EI_\mathrm{b} B}{8C^{2}l^{2}}} \right\} . \end{aligned}$$
(33)

Next, the condition which yields \(\dot{V}(t)<0\)is examined. By substituting Eq. (23) into Eq. (22), we have

$$\begin{aligned} \dot{V}(t)&\le - \int _{0}^{l} (B - \beta _{0} \rho (x))\dot{w}^{2} (x,t)\mathrm{d}x \nonumber \\&-\, \beta _{0}\int _{0}^{l} EI(x)w^{\prime \prime 2} (x,t)\mathrm{d}x \nonumber \\&+\, C\beta _{0} \int _{0}^{l} \dot{w}(x,t)w^{\prime }(x,t)\mathrm{d}x \end{aligned}$$
(34)

Define

$$\begin{aligned} \rho _{\max } =b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} +2b_\mathrm{p} \rho _\mathrm{p} t_\mathrm{p} \ge \rho (x). \end{aligned}$$
(35)

By using Eqs. (24), (25) and (35), it yields

$$\begin{aligned} \dot{V}(t)&\le \int _{0}^{l} \left( {\beta _{0} \rho _{{\max }} + \frac{{C\beta _{0} }}{{\alpha _{3} }} - B} \right) \dot{w}^{2} (x,t)\mathrm{d}x \nonumber \\&+\, \beta _{0} \int \int _{0}^{l} \left( {\alpha _{3} Cl^{2} - EI(x)} \right) w^{\prime \prime 2} (x,t)\mathrm{d}x \end{aligned}$$
(36)

where \(\alpha _3 \) is a positive constant. By setting

$$\begin{aligned} \beta _0 \rho _{\max } +\frac{C\beta _0 }{\alpha _3 }-B<0,\quad \alpha _3 Cl^{2}-EI(x)<0, \end{aligned}$$
(37)

we obtain \(\dot{V}(t)<0\). Thus, \(\beta _0 \) and \(\alpha _3 \) should be chosen as

$$\begin{aligned}&\beta _0 <\frac{B}{\rho _{\max } +\frac{C}{\alpha _3 }},\end{aligned}$$
(38)
$$\begin{aligned}&\alpha _3 <\frac{EI(x)}{Cl^{2}}<\frac{EI_\mathrm{b} }{Cl^{2}} \end{aligned}$$
(39)

to guarantee \(\dot{V}(t)<0\). Therefore, according to Eqs. (33) and (38), \(\beta _0 \) should be chosen as

$$\begin{aligned} \beta _0 <\min \left\{ {\frac{B}{8b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} },\frac{EI_\mathrm{b} B}{8C^{2}l^{2}},\frac{B}{\rho _{\max } +\frac{C}{\alpha _3 }}} \right\} . \end{aligned}$$
(40)

where \(\alpha _3 \) satisfies Eq. (39).

Note that the conditions (39) and (40) are achievable. For our experimental system (using numerical values form Table 1), we have \(\frac{EI_\mathrm{b} }{Cl^{2}}=9.8\). Thus, we can simply choose \(\alpha _3 =1\) to satisfy Eq. (39). Similarly, we have \(\frac{B}{8b_\mathrm{b} \rho _\mathrm{b} t_\mathrm{b} }=386\), \(\frac{EI_\mathrm{b} B}{8C^{2}l^{2}}=3,070\) and \(\frac{B}{\rho _{\max } +C}=665\). Thus, \(\beta _0 <386\) satisfies Eq. (40).

Appendix 2

To estimate \(g(t)\) from \(w(l,t)\), we considered only the first vibration mode of the beam. The deflection equation can be expressed as (Beer et al. 2014)

$$\begin{aligned} w(x,t)=\frac{F}{EI_\mathrm{b} }\left( {\frac{lx^{2}}{2}-\frac{x^{3}}{6}} \right) . \end{aligned}$$
(41)

Taking its derivative with respect to \(x\) yields

$$\begin{aligned} {w}'(x,t)=\frac{F}{EI_\mathrm{b} }\left( {lx-\frac{x^{2}}{2}} \right) . \end{aligned}$$
(42)

From Eq. (41),

$$\begin{aligned} \frac{F}{EI_\mathrm{b} }=3\frac{w(l,t)}{l^{3}}. \end{aligned}$$
(43)

Substituting Eq. (43) into Eq. (42) yields

$$\begin{aligned} {w}'(x,t)=3\frac{w(l,t)}{l^{3}}\left( {lx-\frac{x^{2}}{2}} \right) . \end{aligned}$$
(44)

Thus, we have

$$\begin{aligned} g(t)=3\frac{w(l,t)}{l^{3}}\left( {l(l_2 -l_1 )-\frac{(l_2^2 -l_1^2)}{2}} \right) . \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luemchamloey, A., Kuntanapreeda, S. Active Vibration Control of Flexible Beams Based on Infinite-Dimensional Lyapunov Stability Theory: An Experimental Study. J Control Autom Electr Syst 25, 649–656 (2014). https://doi.org/10.1007/s40313-014-0145-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-014-0145-3

Keywords

Navigation