Skip to main content
Log in

Mean-Field, Infinite Horizon, Optimal Control of Nonlinear Stochastic Delay System Governed by Teugels Martingales Associated with Lévy Processes

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

This paper focuses on optimal control of nonlinear stochastic delay system constructed through Teugels martingales associated with Lévy processes and standard Brownian motion, in which finite horizon is extended to infinite horizon. In order to describe the interacting many-body system, the expectation values of state processes are added to the concerned system. Further, sufficient and necessary conditions are established under convexity assumptions of the control domain. Finally, an example is given to demonstrate the application of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agram, N., Haadem, S., Øksendal, B., Proske, F.: A maximum principle for infinite horizon delay equations. SIAM J. Math. Anal. 45(4), 2499–2522 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agram, N., Øksendal, B.: Infinite horizon optimal control of forward-backward stochastic differential equations with delay. J. Comput. Appl. Math. 259, 336–349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aseev, S.M., Kryazhimskii, A.V.: The Pontryagin maximum principle and optimal economic growth problems. Proc. Steklov Inst. Math. 257(1), 1–255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Applebaum, D.: L\(\acute{e}\)vy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  5. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013)

    Book  MATH  Google Scholar 

  6. Elsanosi, I., Øksendal, B., Sulem, A.: Some solvable stochastic control problems with delay. Stoch. Stoch. Rep. 71(1–2), 69–89 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chala, A.: Near-relaxed control problem of fully coupled forward–backward doubly system. Commun. Math. Stat. 3(4), 459–476 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haadem, S.S., Øksendal, B., Proske, F.: Maximum principles for jump diffusion processes with infinite horizon. Automatica 49(7), 2267–2275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chighoub, F., Mezerdi, B.: A stochastic maximum principle in mean-field optimal control problems for jump diffusions. Arab J. Math. Sci. 19(2), 223–241 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Hafayed, M., Tabet, M., Boukaf, S.: Mean-field maximum principle for optimal control of forward–backward stochastic systems with jumps and its application to mean–variance portfolio problem. Commun. Math. Stat. 3, 163–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hafayed, M., Abbas, S., Abba, A.: On mean-field partial information maximum principle of optimal control for stochastic systems with Levy processes. J. Optim. Theory Appl. 167, 1051–1069 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hafayed, M., Ghebouli, M., Boukaf, S., Shi, Y.: Partial information optimal control of mean-field forward–backward stochastic system driven by Teugels martingals with applications. Neurocomputing 200, 11–21 (2016)

    Article  Google Scholar 

  13. Hafayed, M.: A mean-field necessary and sufficient conditions for optimal singular stochastic control. Commun. Math. Stat. 1(4), 417–435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kushner, H.J.: On the stochastic maximum principle: fixed time of control. J. Math. Anal. Appl. 11, 78–92 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J.: Stochastic maximum principle in the mean-field controls. Automatica 48(2), 366–373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, R., Liu, B.: A maximum principle for fully coupled stochastic control systems of mean-field type. J. Math. Anal. Appl. 415(2), 902–930 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, H., Liu, B.: Infinite horizon optimal control problem of mean-field backward stochastic delay differential equation under partial information. Eur. J. Oper. Res. 36, 43–50 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Meng, Q., Shen, Y.: Optimal control of mean-field jump-diffusion systems with delay: a stochastic maximum principle approach. J. Comput. Appl. Math. 279, 13–30 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Michiels, W., Morarescu, C.I., Niculescu, S.I.: Consensus problems with distributed delays, with application to traffic flow models. SIAM J. Cont. Optim. 48(1), 77–101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitsui, K., Tabata, Y.: A stochastic linear–quadratic problem with L\(\acute{e}\)vy processes and its application to finance. Stoch. Proc. Appl. 118(1), 120–152 (2008)

    Article  MATH  Google Scholar 

  21. Muthukumar, P., Deepa, R.: Infinite horizon optimal control of forward–backward stochastic system driven by Teugels martingales with Levy processes. Stoch. Dyn. 17(3), 1750020 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nualart, D., Schoutens, W.: Chaotic and predictable representations for L\(\acute{e}\)vy processes. Stoch. Proc. Appl. 90(1), 109–122 (2000)

    Article  MATH  Google Scholar 

  23. Nualart, D., Schoutens, W.: Backward stochastic differential equations and Feynman–Kac formula for L\(\acute{e}\)vy processes, with applications in finance. Bernoulli 7(5), 761–776 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Protter, P.: Stochastic Integration and Differential Equations, vol. 21. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  25. Shen, Y., Meng, Q.X., Shi, P.: Maximum principle for mean-field jumpdiffusion stochastic delay differential equations and its application to finance. Automatica 50(6), 1565–1579 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena, vol. 336. Oxford University Press, Oxford (1987)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor, the associate editor and anonymous referees for their constructive corrections and valuable suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Muthukumar.

Additional information

This work was supported by Science Engineering Research Board (SERB), DST, Govt. of India under YSS Project F. No: YSS/2014/000447 dated 20.11.2015. The second author is thankful to UGC, New Delhi, for providing BSR fellowship for the year 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumar, P., Deepa, R. Mean-Field, Infinite Horizon, Optimal Control of Nonlinear Stochastic Delay System Governed by Teugels Martingales Associated with Lévy Processes. Commun. Math. Stat. 7, 163–180 (2019). https://doi.org/10.1007/s40304-018-0143-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-018-0143-z

Keywords

Mathematics Subject Classification

Navigation