Skip to main content
Log in

A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

For the solution to \(\partial ^2_tu(x,t)-\triangle u(x,t)+q(x)u(x,t)=\delta (x,t)\) and \(u\mid _{t<0}=0\), consider an inverse problem of determining \(q(x), x\in \Omega \) from data \(f=u\mid _{S_T}\) and \(g=(\partial u/\partial \mathbf {n})\mid _{S_T}\). Here \(\Omega \subset \{(x_1,x_2,x_3)\in \mathbb {R}^3\mid x_1>0\}\) is a bounded domain, \(S_{T}=\{(x,t)\mid x\in {\partial \Omega },\vert {x}\vert<t<T+\vert {x}\vert \}\), \(\mathbf {n}=\mathbf {n}(x)\) is the outward unit normal \(\mathbf {n}\) to \(\partial \Omega \), and \(T>0\). For suitable \(T>0\), prove a Lipschitz stability estimation:

$$\begin{aligned} \left\| {q_1-q_2}\right\| _{L^2(\Omega )}\le C\left\{ \left\| {f_1-f_2}\right\| _{H^1(S_T)}+\left\| {g_1-g_2} \right\| _{L^2(S_T)}\right\} , \end{aligned}$$

provided that \(q_1\) satisfies a priori uniform boundedness conditions and \(q_2\) satisfies a priori uniform smallness conditions, where \(u_k\) is the solution to problem (1.1) with \(q = q_k, k = 1, 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Baudouin, L., De Buhan, M., Ervedoza, S.: Global Carleman estimates for waves and applications. Commun. Partial Differ. Equ. 38, 823–859 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beilina, L., Klibanov, M.V.: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. Springer, New York (2012)

    Book  MATH  Google Scholar 

  4. Bukhgeim, A.L., Klibanov, M.V.: Global uniqueness of a class of multidimensional inverse problems. Sov. Math. Dokl. 24, 244–247 (1981)

    MATH  Google Scholar 

  5. Cipolatti, R., Lopez, I.F.: Determination of coefficients for a dissipative wave equation via boundary measurements. J. Math. Anal. Appl. 306, 317–329 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Glushkova, D.I.: Stability estimates for the inverse problem of finding the absorption constant. Differ. Equ. 37, 1261–1270 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Glushkova, D.I., Romanov, V.G.: A stability estimate for a solution to the problem of determination of two coeffients of a hyperbolic equation. Sib. Math. J. 44, 250–259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Imanuvilov, O.I., Yamamoto, M.: Global uniqueness and stability in determining coeddicients of wave equations. Commun. Partial Differ. Equ. 26, 1409–1425 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Imanuvilov, O.I., Yamamoto, M.: Determination of a coefficient in an acoustis equation with a single measurement. Inverse Probl. 19, 1409–1425 (2003)

    Article  MathSciNet  Google Scholar 

  10. Isakov, V.: A nonhyperbolic Cauchy problem for \(\Box _b\Box _c\), and its applications to elasticity theory. Commun. Pure Appl. Math. 39, 747–767 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Isakov, V.: An inverse problem for the dynamical Lamé system with two sets of local boundary data. In: Control Theroy of Parital Differential Equations. Chapman and Hall/CRC 101-110 (2005)

  13. Khaidarov, A.: On stability estimates in multidimensional inverse problems for differential equations. Sov. Math. Dokl. 38, 614–617 (1989)

    MathSciNet  Google Scholar 

  14. Klibanov, M.V.: Inverse problems and Carleman estimates. Inverse Probl. 8, 575–596 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klibanov, M.V.: Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 21, 477–560 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klibanov, M.V., Timonov, A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP Utrecht, Boston (2004)

    Book  MATH  Google Scholar 

  17. Li, S.: Estimation of coefficients in a hyperbolic equation with impulsive inputs. J. Inverse Ill-Posed Probl. 14, 891–904 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Romanov, V.G.: Inverse Problems of Mathematical Physics. VSP Utrecht, Boston (1987)

    Google Scholar 

  19. Romanov, V.G.: On a stability estimate for a solution to an inverse problem for a hyperbolic equation. Sib. Math. J. 39, 381–393 (1998)

    Article  MathSciNet  Google Scholar 

  20. Romanov, V.G.: A stability estimates of a solution of the inverse problem of the sound speed determination. Sib. Math. J. 40, 1119–1133 (1999)

    Article  MathSciNet  Google Scholar 

  21. Romanov, V.G.: A stability estimate for a problem of determination of coefficients under the first derivatives in the second type hyperbolic equation. Dokl. Math. 62, 459–461 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Romanov, V.G.: Investigation Methods for Inverse Problems. VSP Utrecht, Boston (2002)

    Book  MATH  Google Scholar 

  23. Romanov, V.G., Yamamoto, M.: Multidimensional inverse problem with impulse input and a single boundary measurement. J. Inverse Ill-Posed Probl. 7, 573–588 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Romanov, V.G., Yamamoto, M.: On the determination of wave speed and potential in a hyperbolic equation by two measurements. Contemp. Math. 348, 1–10 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Romanov, V.G., Yamamoto, M.: On the determination of the sound speed and a damping coefficient by two measurements. Appl. Anal. 84, 1025–1039 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, Z.: On continuous dependence for an inverse initial boundary value problem for the wave equation. J. Math. Anal. Appl. 150, 188–204 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yamamoto, M.: Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78, 65–98 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their invaluable comments. The authors are supported by Project 11101391 supported by National Natural Science Foundation of China and Project YZ3471500002 supported by University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Qin.

Appendix: Proof of Lemma 2.1

Appendix: Proof of Lemma 2.1

Similar to the proof of Theorem 1.1, by (1.2), (1.4) and (1.6), the following inequalities hold:

$$\begin{aligned}&0<x^0_1-r\le \vert {x}\vert \le x^0_1+r, \quad {x\in {\overline{\Omega }}}, \end{aligned}$$
(3.1)
$$\begin{aligned}&0<(1-\alpha )x_1^0-r<\left| {x-\alpha x^0}\right|< r+(1-\alpha ) x^0_1<\frac{5}{2}r,\quad {x\in {\overline{\Omega }}}, \end{aligned}$$
(3.2)
$$\begin{aligned}&-r-\frac{T}{2}\le t-x^0_1-\frac{T}{2}\le \frac{T}{2}+r, \quad {(x,t)\in {\overline{G_T}}}. \end{aligned}$$
(3.3)

Furthermore, one has

$$\begin{aligned} x_1=x_1^0-x_1^0+x_1\ge x_1^0-\left| x_1^0-x_1\right| \ge x_1^0-\left| x_0-x\right| \ge x_1^0-r>0,\quad {x\in {\overline{\Omega }}}. \end{aligned}$$
(3.4)

By (1.7), there exists a constant \(\vartheta >0\) such that

$$\begin{aligned} 0<\frac{1}{16}\beta ^3\left[ 4r+\frac{4\left( 2x_1^0+r\right) }{\beta } +\vartheta \right] ^2<\left[ (1-\alpha )x_1^0-r\right] ^2. \end{aligned}$$
(3.5)

In the following, we assume that

$$\begin{aligned} T\in \left( 2r+\frac{4\left( 2x_1^0+r\right) }{\beta }, 2r+\frac{4\left( 2x_1^0+r\right) }{\beta }+\vartheta \right) . \end{aligned}$$
(3.6)

Then one has

$$\begin{aligned} 4r+\frac{4\left( 2x_1^0+r\right) }{\beta }<T+2r<4r+\frac{4 \left( 2x_1^0+r\right) }{\beta }+\vartheta . \end{aligned}$$
(3.7)

It follows from (3.5) and (3.7) that

$$\begin{aligned} \left[ (1-\alpha )x_1^0-r\right] ^2>\frac{1}{16}\beta ^3(T+2r)^2. \end{aligned}$$
(3.8)

Therefore noting (1.7), one can take a constant \(\rho >0\) such that

$$\begin{aligned} 0<2\beta<\rho <\min \left\{ 2, \frac{64\left[ (1-\alpha )x_1^0-r\right] ^2}{\beta ^2(T+2r)^2}-2\beta \right\} . \end{aligned}$$
(3.9)

Furthermore, by (3.6), one can get

$$\begin{aligned} \frac{\beta ^2}{16}\left( \frac{T}{2}-r\right) ^2>\frac{1}{4}\left( r+2x_1^0\right) ^2,\quad \frac{\beta }{2}\left( \frac{T}{2}-r\right) -2x_1^0>r. \end{aligned}$$
(3.10)

Let \(s>0\), \(w=e^{s\varphi }v\) and \(Lw=e^{s\varphi }\Box \left( e^{-s\varphi }w\right) \). Then one can obtain that

$$\begin{aligned} e^{s\varphi }\Box v&=Lw =\left\{ \Box w+s^2\left[ \left( \partial _t\varphi \right) ^2-\vert {\nabla \varphi }\vert ^2\right] w+\frac{1}{4}s\rho w\right\} \nonumber \\&\quad \ +s\left\{ \left[ -\Box \varphi -\frac{1}{4}\rho \right] w-2\left( \partial _t\varphi \right) \left( \partial _tw\right) +2(\nabla \varphi \cdot \nabla w)\right\} \nonumber \\&=\left( \Box w+s^2dw+\frac{1}{4}s\rho w\right) +s\left[ cw+b\left( \partial _tw\right) +a \cdot \nabla w\right] , \end{aligned}$$
(3.11)

where

$$\begin{aligned} a&=2\nabla \varphi =x-\alpha x^0,\ b=-2\left( \partial _t\varphi \right) = \frac{\beta }{2}\left( t-x^0_1-\frac{T}{2}\right) , \nonumber \\ c&=-\Box \varphi -\frac{\rho }{4}=\frac{\beta +6-\rho }{4}, \nonumber \\ d&=\left( \partial _t\varphi \right) ^2-\vert {\nabla \varphi } \vert ^2=\frac{1}{16}\beta ^2\left( t-x^0_1-\frac{T}{2}\right) ^2- \frac{1}{4}\left| {x-\alpha x^0}\right| ^2. \end{aligned}$$
(3.12)

We note that c is a constant. Furthermore, by \(2\beta<\rho <2\), one has \(\frac{3}{2}>c>\frac{\beta +4}{4}\). Using the inequality: \((\alpha +\gamma )^2\ge 2\alpha \gamma \), one has

$$\begin{aligned} (Lw)^2\ge 2s\left( \Box w+s^2dw+\frac{1}{4}s\rho w\right) \left[ cw+b\left( \partial _tw\right) +a \cdot {\nabla w}\right] . \end{aligned}$$
(3.13)

In the following, we shall first prove

$$\begin{aligned}&2\int _{G_T}\left( \Box w\right) \left[ cw+b(\partial _tw) +a \cdot {\nabla w}\right] \,\mathrm{d}x\,\mathrm{d}t \nonumber \\&\quad \ge r\int _{{\Sigma _0}\cup {\Sigma _T}}\left[ \left( w_t+ \nabla w \cdot \nu \right) ^2+\vert {\nabla ^\prime w}\vert ^2- \frac{2c}{r\left( x_1^0-r\right) }w^2\right] \,\mathrm{d}x \nonumber \\&\qquad -C_{7}\int _{S_T}\left( \vert {\nabla _{x,t}w}\vert ^2+w^2\right) \,\mathrm{d}\sigma \,\mathrm{d}t \nonumber \\&\qquad +\frac{1}{2}\int _{G_T}\left[ (\rho -2\beta )\left( \partial _tw\right) ^2 +(4-\rho )\vert {\nabla w}\vert ^2\right] \,\mathrm{d}x\,\mathrm{d}t, \end{aligned}$$
(3.14)

by almost completely repeating the procedure of proving Lemma 4.4.1 in [22]. In fact, noting (3.12), one can verify that

$$\begin{aligned} 2\left( \Box w\right) \left[ cw+b\left( \partial _tw\right) +a \cdot {\nabla w}\right] =\partial _tP+{\nabla } \cdot Q+R, \end{aligned}$$

where

$$\begin{aligned} P&=b\left[ \left( \partial _tw\right) ^2+\vert {\nabla w}\vert ^2\right] +2\left( \partial _tw\right) \left( a \cdot {\nabla w}+cw\right) , \nonumber \\ Q&=\left[ \vert {\nabla w}\vert ^2-\left( \partial _tw\right) ^2\right] a -2\left[ a\cdot {\nabla w}+b\left( \partial _tw\right) +cw\right] \left( \nabla w\right) , \nonumber \\ R&=\frac{1}{2}(\rho -2\beta )(\partial _tw)^2+\frac{1}{2}(4-\rho ) \left| {\nabla w}\right| ^2. \end{aligned}$$
(3.15)

Therefore,

$$\begin{aligned}&2\int _{G_T}\left( \Box w\right) \left[ cw+b\left( \partial _tw\right) +a \cdot \nabla w\right] \,\mathrm{d}x\,\mathrm{d}t \nonumber \\&=\int _{\Sigma _T}(P-Q \cdot \nu )\,\mathrm{d}x+\int _{\Sigma _0}(Q \cdot \nu -P)\, \mathrm{d}x+\int _{S_T}Q \cdot \mathbf {n}\,\mathrm{d}\sigma \,\mathrm{d}t+\int _{G_T}R\,\mathrm{d}x\,\mathrm{d}t. \end{aligned}$$
(3.16)

Denote

$$\begin{aligned} a^\prime =a-(a \cdot \nu )\nu ,\quad \nabla ^\prime =\nabla -(\nabla \cdot \nu )\nu . \end{aligned}$$

Then for \((x,t)\in \Sigma _T\) and any positive \(\lambda =\lambda (x)>0\) one has

$$\begin{aligned} P-Q \cdot \nu&=(b+a \cdot \nu )\left( w_t+\nabla w \cdot \nu \right) ^2+(b-a\cdot \nu )\left| {\nabla ^\prime w}\right| ^2 \nonumber \\&\quad +2\left( w_t+\nabla w \cdot \nu \right) \left( \nabla w \cdot a^\prime +cw\right) \nonumber \\&\ge \left( b+a \cdot \nu -\lambda \right) \left( w_t+\nabla w \cdot \nu \right) ^2+\left( b-a \cdot \nu -\lambda ^{-1}\left| {a^\prime }\right| ^2\right) \vert {\nabla ^\prime w}\vert ^2 \nonumber \\&\quad +\mathrm{div}\left( c\nu w^2\mid _{\Sigma _T}\right) -\frac{2c}{|x|}w^2. \end{aligned}$$
(3.17)

For the inequality in (3.17), one has used the following equalities and inequalities:

$$\begin{aligned}&2\left( w_t+\nabla w \cdot \nu \right) \left( \nabla w \cdot a^\prime +cw\right) \ge -\lambda \left( w_t+{\nabla w} \cdot \nu \right) ^2 \\&-\lambda ^{-1}\left( \nabla w \cdot a^\prime \right) ^2+2cw\left( w_t+\nabla w \cdot \nu \right) ,\\&\nabla w\cdot a'=\nabla ' w\cdot a', \quad -\lambda ^{-1}\left( \nabla ' w\cdot a'\right) ^2\ge -\lambda ^{-1}\left| \nabla ' w\right| ^2\left| a'\right| ^2, \end{aligned}$$

and the relation

$$\begin{aligned} 2cw\left( w_t+\nabla w \cdot \nu \right) =\mathrm{div}\left( c\nu w^2\mid _{\Sigma _T}\right) -cw^2\mathrm{div}\nu =\mathrm{div}\left( c\nu w^2\mid _{\Sigma _T}\right) -\frac{2c}{|x|}w^2. \end{aligned}$$

Assuming \(\lambda =a \cdot \nu +x_1^0+r\), then for all \((x,t)\in {\Sigma _T}\), by (1.6), (3.1) and (3.10), one has

$$\begin{aligned} \lambda =|x|-\frac{\alpha x_1^0x_1}{|x|}+x_1^0+r\ge |x|+r\ge x_1^0>0,\quad -\frac{2c}{|x|}\ge -\frac{2c}{x_1^0-r}, \end{aligned}$$
(3.18)
$$\begin{aligned} b+a \cdot \nu -\lambda =\frac{\beta }{2}\left( \frac{T}{2}+\vert {x}\vert -x^0_1\right) - \left( x^0_1+r\right) \ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -2x^0_1>r, \end{aligned}$$
(3.19)

and

$$\begin{aligned} b-a \cdot \nu -\lambda ^{-1}\vert {a^\prime }\vert ^2&=\frac{\beta }{2} \left( \frac{T}{2}+\vert {x}\vert -x^0_1\right) -\frac{\vert {a \cdot \nu } \vert ^2+\left( x^0_1+r\right) \left( a \cdot \nu \right) +\vert {a^\prime } \vert ^2}{a \cdot \nu +x^0_1+r} \nonumber \\&\ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -\frac{\left( x^0_1 +r\right) (a \cdot \nu )+\vert {a}\vert ^2}{a \cdot \nu +x^0_1+r} \nonumber \\&\ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -\frac{\left( x^0_1 +r\right) (a \cdot \nu )+\left| {x^0_1+r}\right| ^2}{a \cdot \nu +x^0_1+r} \nonumber \\&\ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -\left( x^0_1+r\right) \nonumber \\&\ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -2x^0_1>r. \end{aligned}$$
(3.20)

Hence, by (3.17)–(3.20), for \((x,t)\in \Sigma _T\) one has

$$\begin{aligned} P-Q \cdot \nu \ge r\left[ \left( w_t+\nabla w \cdot \nu \right) ^2+\left| {\nabla ^\prime w}\right| ^2\right] -\frac{2c}{x_1^0-r}w^2+\mathrm{div}\left( c\nu w^2\mid _{\Sigma _T}\right) .\nonumber \\ \end{aligned}$$
(3.21)

By similar calculations, for \((x,t)\in \Sigma _0\), one has

$$\begin{aligned} Q \cdot \nu -P =&(-b-a \cdot \nu )\left( w_t+\nabla w \cdot \nu \right) ^2 +(-b+a \cdot \nu )\left| {\nabla ^\prime w}\right| ^2 \nonumber \\&-2\left( w_t+\nabla w \cdot \nu \right) \left( \nabla w \cdot a^\prime +cw\right) \nonumber \\ \ge&(-b-a \cdot \nu -\mu )\left( w_t+\nabla w \cdot \nu \right) ^2 +\left( -b+a \cdot \nu -\mu ^{-1}\vert {a^\prime }\vert ^2\right) \left| {\nabla ^\prime w}\right| ^2 \nonumber \\&-\mathrm{div}\left( c\nu w^2\mid _{\Sigma _0}\right) +\frac{2c}{|x|}w^2, \end{aligned}$$
(3.22)

where \(\mu =x_1^0+r-a \cdot \nu \). Then by (3.1), (3.4), and (3.10) one has

$$\begin{aligned} \mu =x_1^0+r-|x|+\frac{\alpha x_1^0x_1}{|x|}\ge \frac{\alpha x_1^0\left( x_1^0-r\right) }{x_1^0+r}>0, \end{aligned}$$
$$\begin{aligned} -b-a \cdot \nu -\mu = -\frac{\beta }{2}\left( -\frac{T}{2}+\vert {x}\vert -x^0_1\right) -\left( x^0_1+r\right) \ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -2x^0_1>r, \end{aligned}$$
(3.23)

and

$$\begin{aligned}&-b+a \cdot \nu -\mu ^{-1}\vert {a^\prime }\vert ^2 = \frac{\beta }{2} \left( \frac{T}{2}-\vert {x}\vert +x^0_1\right) -\frac{\vert {a}\vert ^2- \left( x^0_1+r\right) (a \cdot \nu )}{-a \cdot \nu +x^0_1+r} \nonumber \\&\quad \ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -\left( x^0_1+r\right) \ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -2x^0_1>r. \end{aligned}$$
(3.24)

Hence, by (3.22)–(3.24), one has

$$\begin{aligned}&Q \cdot \nu -P\ge r\left[ \left( w_t+\nabla w \cdot \nu \right) ^2+\left| {\nabla ^\prime w}\right| ^2\right] \nonumber \\&\quad +\frac{2c}{x_1^0+r}w^2-\mathrm{div}\left( c\nu w^2\mid _{\Sigma _0}\right) ,\quad {(x,t)\in {\Sigma _0}}. \end{aligned}$$
(3.25)

By (3.11), one has

$$\begin{aligned} Q\cdot \mathbf {n}=\left[ \vert {\nabla w}\vert ^2-\left( \partial _tw\right) ^2\right] (a\cdot \mathbf {n})-2\left[ a \cdot \nabla w+b\left( \partial _tw\right) +cw\right] \left( \nabla w \cdot \mathbf {n}\right) , \end{aligned}$$

so by (3.2), (3.3), (3.9) and (3.12), one can obtain

$$\begin{aligned} |Q \cdot \mathbf {n} \mid \le C_8\left( \vert {\nabla _{x,t}w}\vert ^2+w^2\right) ,\quad {(x,t)\in {S_T}}. \end{aligned}$$
(3.26)

It follows from (3.15), (3.16), (3.21), (3.25) and (3.26) that

$$\begin{aligned}&2\int _{G_T}\left( \Box w\right) \left[ cw+b\left( \partial _tw\right) +a \cdot {\nabla w}\right] \,\mathrm{d}x\,\mathrm{d}t\\&\ge \, r\int _{{\Sigma _0}\cup {\Sigma _T}}\left[ \left( w_t+{\nabla w} \cdot \nu \right) ^2+\vert {\nabla ^\prime w}\vert ^2-\frac{2c}{r\left( x_1^0-r\right) }w^2\right] \,\mathrm{d}x\\&\quad -C_8\int _{S_T}\left( \vert {\nabla _{x,t}w}\vert ^2+w^2\right) \,\mathrm{d}\sigma \,\mathrm{d}t -C_9\int _{{\partial {\Sigma _T}}\cup {\partial {\Sigma _0}}}w^2\,\mathrm{d}\sigma \\&\quad +\frac{1}{2}\int _{G_T}\left[ (\rho -2\beta )\left( \partial _tw\right) ^2 +(4-\rho )\left| {\nabla w}\right| ^2\right] \,\mathrm{d}x\,\mathrm{d}t, \end{aligned}$$

where \(\partial {\Sigma _0}\) and \(\partial {\Sigma _T}\) denote the boundaries of \(\Sigma _0\) and \(\Sigma _T\), respectively. \(\mathrm{d}\sigma \) is an area element of \(\partial \Omega \). Furthermore, as (4.1.40) in [16], one can show that

$$\begin{aligned} \int _{\partial {\Sigma _T}\cup \partial {\Sigma _0}}w^2\,\mathrm{d}\sigma \le T\int _{S_T}\left( w^2_t+\frac{3}{T^2}w^2\right) \,\mathrm{d}\sigma \,\mathrm{d}t. \end{aligned}$$

Therefore, one can obtain (3.14).

Moreover, one can verify that

$$\begin{aligned}&2dw\left[ cw+b\left( \partial _tw\right) +a \cdot {\nabla w}\right] \\&\quad = \nabla \cdot \left( dw^2a\right) +\partial _t\left( dbw^2\right) -w^2\left[ \nabla \cdot (da)\right] -w^2\partial _t(bd)+2dcw^2. \end{aligned}$$

Then one has

$$\begin{aligned}&2\int _{G_T}dw\left[ cw+b(\partial _tw)+a \cdot {\nabla w}\right] \,\mathrm{d}x\,\mathrm{d}t \nonumber \\&\quad =\int _{\Sigma _T}d(b-a \cdot \nu )w^2\,\mathrm{d}x+\int _{\Sigma _0}d(a \cdot \nu -b)w^2\,\mathrm{d}x \nonumber \\&\qquad +\int _{S_T}dw^2\left( a \cdot \mathbf {n}\right) \,\mathrm{d}\sigma \,\mathrm{d}t+\int _{G_T}w^2 \left[ 2dc-\nabla \cdot (da)-\partial _t(bd)\right] \,\mathrm{d}x\,\mathrm{d}t. \end{aligned}$$
(3.27)

By (3.1), (3.2), (3.3), (3.10) and (3.12), for \((x,t)\in {\Sigma _T}\) one has

$$\begin{aligned} d&=\frac{1}{16}\beta ^2\left( \vert {x}\vert -x^0_1+\frac{T}{2} \right) ^2-\frac{1}{4}\left| {x-\alpha x^0}\right| ^2\ge \frac{1}{16}\beta ^2\left( \frac{T}{2}-r\right) ^2-\frac{1}{4} \left( \frac{5r}{2}\right) ^2 \nonumber \\&\ge \frac{1}{4}\left( r+2x^0_1\right) ^2-\frac{25r^2}{16} >\frac{1}{4}\left( 9r^2-\frac{25}{4}r^2\right) =\frac{11}{16}r^2, \end{aligned}$$
(3.28)
$$\begin{aligned}&b-a \cdot \nu =\frac{\beta }{2}\left( \vert {x}\vert -x^0_1 +\frac{T}{2}\right) -a \cdot \nu \nonumber \\&\ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -\left| {x-\alpha x^0}\right| \ge r+2x_1^0-\frac{5r}{2}>\frac{r}{2}, \end{aligned}$$
(3.29)

and for \((x,t)\in {\Sigma _0}\), one has

$$\begin{aligned} d&=\frac{1}{16}\beta ^2\left( \vert {x}\vert -x^0_1-\frac{T}{2} \right) ^2-\frac{1}{4}\vert {x-\alpha x^0}\vert ^2\ge \frac{1}{16} \beta ^2\left( \frac{T}{2}-r\right) ^2-\frac{1}{4}\left( \frac{5r}{2}\right) ^2 \nonumber \\&\ge \frac{1}{4}\left( r+2x^0_1\right) ^2-\frac{25r^2}{16}>\frac{11}{16}r^2, \end{aligned}$$
(3.30)
$$\begin{aligned}&a \cdot \nu -b=a \cdot \nu -\frac{\beta }{2}\left( \vert {x}\vert -x^0_1-\frac{T}{2}\right) \nonumber \\&\ge \frac{\beta }{2}\left( \frac{T}{2}-r\right) -\left| {x-\alpha x^0}\right| > \frac{r}{2}. \end{aligned}$$
(3.31)

Furthermore, by (3.12), one can arrive at

$$\begin{aligned}&2dc-\nabla \cdot (da)-\partial _t(bd)\\&\quad =\frac{1}{2}\left[ \left| {x-\alpha x^0}\right| ^2-\frac{\rho }{16} \beta ^2\left( t-x^0_1{-}\frac{T}{2}\right) ^2 {+}\frac{\rho }{4}\left| {x-\alpha x^0}\right| ^2-\frac{\beta ^3}{8} \left( t-x^0_1{-}\frac{T}{2}\right) ^2\right] . \end{aligned}$$

Then, by (3.2), (3.3) and (3.9), one has

$$\begin{aligned}&2dc-\nabla \cdot (da)-\partial _t(bd) \nonumber \\&\quad \ge \frac{1}{2}\left\{ \left[ (1-\alpha )x^0_1-r\right] ^2 -\frac{1}{16}\beta ^2\left( \frac{T}{2}+r\right) ^2\left[ \frac{64[(1-\alpha ) x^0_1-r]^2}{\beta ^2(T+2r)^2}-2\beta \right] \right. \nonumber \\&\qquad \left. +\frac{1}{4}\rho \left[ (1-\alpha )x^0_1-r\right] ^2- \frac{1}{8}\beta ^3\left( \frac{T}{2}+r\right) ^2\right\} \nonumber \\&\quad =\frac{1}{8}\rho \left[ (1-\alpha )x^0_1-r\right] ^2,\quad {(x,t)\in {G_T}}, \end{aligned}$$
(3.32)

and by (3.2), (3.3) and (3.12), one has

$$\begin{aligned} \left| {dw^2(a\cdot \mathbf {n})}\right| \le \left\{ \frac{1}{16} \beta ^2\left( \frac{T}{2}+r\right) ^2+\frac{1}{4}\left( \frac{5}{2}r\right) ^2\right\} {\frac{5r}{2}}w^2\le C_{10}w^2,\quad (x,t)\in S_T. \end{aligned}$$
(3.33)

Then by (3.27)–(3.33), one has

$$\begin{aligned}&2\int _{G_T}dw\left[ cw+bw_t+a \cdot \nabla w\right] \,\mathrm{d}x\,\mathrm{d}t \nonumber \\&\quad \ge \frac{11}{32}r^3\int _{{\Sigma _0}\cup {\Sigma _T}}w^2\,\mathrm{d}x +\frac{1}{8}\rho \left[ (1-\alpha )x_1^0-r\right] ^2\int _{G_T}w^2\, \mathrm{d}x\,\mathrm{d}t-C_{10}\int _{S_T}w^2\,\mathrm{d}\sigma \,\mathrm{d}t. \end{aligned}$$
(3.34)

Furthermore, by the same argument, one has

$$\begin{aligned} 2&\int _{G_T}w\left[ cw+bw_t+a \cdot \nabla w\right] \,\mathrm{d}x\,\mathrm{d}t \nonumber \\&=\int _{\Sigma _T}(b-a \cdot \nu )w^2\,\mathrm{d}x+\int _{\Sigma _0}(a \cdot \nu -b)w^2\,\mathrm{d}x \nonumber \\&\quad -\int _{G_T}\frac{\rho }{2}w^2\,\mathrm{d}x\,\mathrm{d}t+\int _{S_T}(a\cdot \mathbf {n})w^2\,\mathrm{d}\sigma \,\mathrm{d}t \nonumber \\&\ge \frac{r}{2}\int _{{\Sigma _0}\cup {\Sigma _T}}w^2\,\mathrm{d}x-\frac{\rho }{2} \int _{G_T}w^2\,\mathrm{d}x\,\mathrm{d}t-C_{11}\int _{S_T}w^2\,\mathrm{d}\sigma \,\mathrm{d}t. \end{aligned}$$
(3.35)

Hence, by (3.11), (3.13), (3.14), (3.20) and (3.35), one has

$$\begin{aligned}&\int _{G_T}(Lw)^2\,\mathrm{d}x\,\mathrm{d}t=\int _{G_T}\left( \Box v\right) ^2e^{2s\varphi }\,\mathrm{d}x\,\mathrm{d}t \nonumber \\&\quad \ge \int _{{\Sigma _0}\cup {\Sigma _T}}\left\{ rs\left[ \left( w_t +\nabla w \cdot \nu \right) ^2+\vert {\nabla ^\prime w}\vert ^2\right] -\frac{2c}{x_1^0-r}sw^2\right. \nonumber \\&\qquad \left. +\frac{11}{32} r^3 s^3 w^2+\frac{r\rho }{8}s^2w^2\,\right\} \mathrm{d}x \nonumber \\&\qquad +\int _{G_T}\left\{ \frac{1}{2}s\left[ (\rho -2\beta )\left( \partial _t w\right) ^2 +(4-\rho )\vert {\nabla w}\vert ^2\right] \right. \nonumber \\&\left. \qquad +\frac{1}{8}\rho s^3\left[ (1-\alpha ) x_1^0-r\right] ^2w^2-\frac{\rho ^2}{8}s^2w^2\right\} \mathrm{d}x\,\mathrm{d}t \nonumber \\&\qquad -\int _{S_T}\left\{ C_{7}s\left( \vert {\nabla _{x,t}w}\vert ^2+w^2\right) +C_{10}s^3 w^2+\frac{C_{11}}{4}\rho s^2 w^2\right\} \,\mathrm{d}\sigma \,\mathrm{d}t, \end{aligned}$$
(3.36)

for all \(s>0\). One can choose \(s_3>0\), such that for all \(s>s_3\),

$$\begin{aligned}&-\frac{2c}{x_1^0-r}s+\frac{11}{32}r^3s^3+\frac{r\rho }{8}s^2>\frac{11}{32}r^3s^3,\\&\frac{1}{8}\rho s^3[(1-\alpha )x_1^0-r]^2-\frac{\rho ^2}{8} s^2>\frac{\rho }{16}s^3\left[ (1-\alpha )x_1^0-r\right] ^2,\\&C_{7}s+C_{10}s^3+\frac{1}{4}C_{11}\rho s^2<C_{12}s^3. \end{aligned}$$

Hence, by (3.36), one has

$$\begin{aligned}&\int _{G_T}(Lw)^2\,\mathrm{d}x\,\mathrm{d}t=\int _{G_T}\left( \Box v\right) ^2e^{2s\varphi }\,\mathrm{d}x\,\mathrm{d}t \nonumber \\&\quad \ge r\int _{{\Sigma _0}\cup {\Sigma _T}}\left\{ s\left[ \left( w_t+\nabla w \cdot \nu \right) ^2+\left| {\nabla ^\prime w}\right| ^2\right] +\frac{11}{32}r^2s^3w^2\right\} \,\mathrm{d}x \nonumber \\&\qquad +\int _{G_T}\left\{ \frac{1}{2}s\left[ (\rho -2\beta )w_t^2 +(4-\rho )\vert {\nabla w}\vert ^2\right] +\frac{1}{16}\rho s^3\left[ (1-\alpha )x_1^0-r\right] ^2w^2\right\} \,\mathrm{d}x\,\mathrm{d}t \nonumber \\&\qquad -C_{12}\int _{S_T}\left[ s\vert {\nabla _{x,t}w}\vert ^2+s^3w^2\right] \,\mathrm{d}\sigma \,\mathrm{d}t. \end{aligned}$$
(3.37)

On the other hand, by \(w=e^{s\varphi }v\), one has

$$\begin{aligned} \nabla _{x,t}w&=se^{s\varphi }v\left( \nabla _{x,t}\varphi \right) +e^{s\varphi }\left( \nabla _{x,t}v\right) =s w\left( \nabla _{x,t} \varphi \right) +e^{s\varphi }\left( \nabla _{x,t}v\right) ,\\ \partial _tv&=-s\left( \partial _t\varphi \right) e^{-s\varphi }w +e^{-s\varphi }\left( \partial _tw\right) ,\\ \nabla v&=-se^{-s\varphi }w(\nabla \varphi )+e^{-s\varphi }(\nabla w). \end{aligned}$$

Therefore, one has

$$\begin{aligned}&\vert {\nabla _{x,t}w}\vert ^2\le 2e^{2s\varphi }\left| {\nabla _{x,t}v}\right| ^2+2s^2\left| {\nabla _{x,t} \varphi }\right| ^2e^{2s\varphi }v^2,\nonumber \\&\vert {\nabla _{x,t}v}\vert ^2\le 2e^{-2s\varphi }\left| { \nabla _{x,t}w}\right| ^2+2s^2\left| {\nabla _{x,t} \varphi }\right| ^2e^{-2s\varphi }w^2, \nonumber \\&\vert {\nabla v}\vert ^2\le 2e^{-2s\varphi }\left| {\nabla w} \right| ^2+2s^2\left| {\nabla \varphi }\right| ^2e^{-2s\varphi }w^2,\nonumber \\&\vert {\nabla 'v}\vert ^2\le 2e^{-2s\varphi }\vert {\nabla 'w}\vert ^2 +2s^2\vert {\nabla '\varphi }\vert ^2e^{-2s\varphi }w^2, \nonumber \\&\vert {\partial _tv}\vert ^2 \le 2s^2\left| {\partial _t\varphi } \right| ^2e^{-2s\varphi }w^2+e^{-2s\varphi }\left| {\partial _tw}\right| ^2. \end{aligned}$$
(3.38)

By (3.37), (3.38), there exists \(s_0>0\), such that

$$\begin{aligned}&\int _{G_T}\left[ s\vert {\nabla _{x,t}v}\vert ^2+s^3v^2\right] e^{2s\varphi }\,\mathrm{d}x\,\mathrm{d}t\\&\qquad +\int _{{\Sigma _0}\cup {\Sigma _T}}\left\{ s\left[ (v_t+\nabla v \cdot \nu )^2 +\vert {\nabla ^\prime v}\vert ^2\right] +s^3v^2\right\} e^{2s\varphi }\,\mathrm{d}x\\&\quad \le C_{13}\left\{ \int _{G_T}\left[ s\vert {\nabla _{x,t}w} \vert ^2+s^3w^2\right] \,\mathrm{d}x\,\mathrm{d}t\right. \\&\left. \qquad +\int _{{\Sigma _0}\cup {\Sigma _T}}s\left[ \left( w_t+\nabla w \cdot \nu \right) ^2+\vert {\nabla ^\prime w}\vert ^2\right] +s^3w^2\,\mathrm{d}x\right\} \\&\quad \le C_{14}\left\{ \int _{G_T}\left( \Box v\right) ^2e^{2s\varphi }\,\mathrm{d}x\,\mathrm{d}t +\int _{S_T}\left[ s\vert {\nabla _{x,t}w}\vert ^2+s^3w^2\right] \,\mathrm{d}\sigma \,\mathrm{d}t\right\} \\&\quad \le C_{15}\left\{ \int _{G_T}\left( \Box v\right) ^2e^{2s\varphi }\,\mathrm{d}x\,\mathrm{d}t +\int _{S_T}\left[ s\vert {\nabla _{x,t}v}\vert ^2+s^3v^2\right] e^ {2s\varphi }\,\mathrm{d}\sigma \,\mathrm{d}t\right\} , \end{aligned}$$

for all \(s>s_0\). Hence one obtains (2.2). It completes the proof of Lemma 2.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Li, S. A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source. Commun. Math. Stat. 4, 403–421 (2016). https://doi.org/10.1007/s40304-016-0091-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-016-0091-4

Keywords

Mathematics Subject Classification

Navigation