Skip to main content
Log in

Fundamental Solutions of Nonlocal Hörmander’s Operators

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

Consider the following nonlocal integro-differential operator: for \(\alpha \in (0,2)\),

$$\begin{aligned} {\mathcal {L}}^{(\alpha )}_{\sigma ,b} f(x):=\text{ p.v. } \int _{{\mathbb {R}}^d-\{0\}}\frac{f(x+\sigma (x)z)-f(x)}{|z|^{d+\alpha }}{\mathord {\mathrm{d}}}z+b(x)\cdot \nabla f(x), \end{aligned}$$

where \(\sigma {:}{\mathbb {R}}^d\rightarrow {\mathbb {R}}^d\otimes {\mathbb {R}}^d\) and \(b{:}{\mathbb {R}}^d\rightarrow {\mathbb {R}}^d\) are smooth and have bounded first-order derivatives, and p.v. stands for the Cauchy principal value. Let \(B_1(x):=\sigma (x)\) and \(B_{j+1}(x):=b(x)\cdot \nabla B_j(x)-\nabla b(x)\cdot B_j(x)\) for \(j\in {\mathbb {N}}\). Under the following Hörmander’s type condition: for any \(x\in {\mathbb {R}}^d\) and some \(n=n(x)\in {\mathbb {N}}\),

$$\begin{aligned} {\mathrm {Rank}}[B_1(x), B_2(x),\ldots , B_n(x)]=d, \end{aligned}$$

by using the Malliavin calculus, we prove the existence of the heat kernel \(\rho _t(x,y)\) to the operator \({\mathcal {L}}^{(\alpha )}_{\sigma ,b}\) as well as the continuity of \(x\mapsto \rho _t(x,\cdot )\) in \(L^1({\mathbb {R}}^d)\) as a density function for each \(t>0\). Moreover, when \(\sigma (x)=\sigma \) is constant and \(B_j\in C^\infty _b\) for each \(j\in {\mathbb {N}}\), under the following uniform Hörmander’s type condition: for some \(j_0\in {\mathbb {N}}\),

$$\begin{aligned} \inf _{x\in {\mathbb {R}}^d}\inf _{|u|=1}\sum _{j=1}^{j_0}|u B_j(x)|^2>0, \end{aligned}$$

we also show the smoothness of \((t,x,y)\mapsto \rho _t(x,y)\) with \(\rho _t(\cdot ,\cdot )\in C^\infty _b({\mathbb {R}}^d\times {\mathbb {R}}^d)\) for each \(t>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, R.: Fractional order kinetic equations and hypoellipticity. Anal. Appl. 10(03), 237–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.J., Yang, T.: Uncertainty principle and kinetic equations. J. Func. Anal. 255, 2013–2066 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Bally, V., Caramellino, L.: On the distance between probability density functions. Electron. J. Probab. 19(110), 1–33 (2014)

  5. Bichteler, K., Gravereaux, J.B., Jacod, J.: Malliavin Calculus for Processes with Jumps. Gordon and Breach Science Publishers, Philadelphia (1987)

    MATH  Google Scholar 

  6. Bismut, J.M.: Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete 56, 469–505 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bismut, J.M.: Calcul des variations stochastiques et processus de sauts. Z. Wahrsch. Verw. Gebiete 63, 147–235 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogachev, V.I.: Differential Measures and the Malliavin Calculus. AMS, Providence (2010)

    Book  MATH  Google Scholar 

  9. Carmona, P.: Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths. Stoch. Process. Appl. 117(8), 1076–1092 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cass, T.: Smooth densities for stochastic differential equations with jumps. Stoch. Proc. Appl. 119(5), 1416–1435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, H., Li, W.X., Xu, C.J.: Gevrey hypoellipticity for a class of kinetic equations. Commun. Partial Differ. Equ. 36, 693–728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, Z., Peng, X., Song, Y., Zhang, X.: Strong Feller properties for degenerate SDEs with jumps. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 52(2), 888–897 (2016)

  13. Eckmann, J.P., Hairer, M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212(1), 105–164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishikawa, Y., Kunita, H.: Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps. Stoch. Process. Appl. 116, 1743–1769 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Komatsu, T., Takeuchi, A.: Simplified probabilistic approach to the Hörmander theorem. Osaka J. Math. 38, 681–691 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Komatsu, T., Takeuchi, A.: On the smoothness of PDF of solutions to SDE with jumps. Int. J. Differ. Equ. Appl. 2, 141–197 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Kulik, A.: Conditions for existence and smoothness of the distribution density for Ornstein–Uhlenbeck processes with Lévy noises. Theory Probab. Math. Statist. 79, 23–38 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kunita, H.: Smooth density of canonical stochastic differential equation with jumps. Astérisque No. 327, 69–91 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Kunita, H.: Nondegenerate SDEs with jumps and their hypoelliptic properties. J. Math. Soc. Jpn. 65(3), 687–1035 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kusuoka, S.: Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J. Math. 50(3), 491–520 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kusuoka, S., Stroock, D.: Applications of the Malliavin Calculus, Part I. Stochastic Analysis. In: Proceedings of the Taniguchi International Symposium on Stochastic Analysis North-Holland Mathematical Library, vol. 32, pp. 271–306 (1984)

  23. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus. Part II. J. Fac. Sci. Univ. of Tokyo 32(1), 1–76 (1985)

    MathSciNet  MATH  Google Scholar 

  24. Malicet, D., Poly, G.: Properties of convergence in Dirichlet structures. J. Funct. Anal. 264, 2077–2096 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malliavin. P.: Stochastic calculus of variations and hypoelliptic operators. In: Proceedings of International Symposium on Stochastic Differential Equations, Kyoto, pp. 195–263 (1976)

  26. Morimoto, Y., Xu, C.J.: Hypoellipticity for a class of kinetic equations. J. Math. Kyoto Univ. 47–1, 129–152 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Norris, J.: Simplified Malliavin calculus. In: Seminaire de Probabilités XX, Lecture Notes in Mathematics, vol. 1204. Springer, Berlin, pp. 101–130 (1986)

  28. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, New York (2006)

    MATH  Google Scholar 

  29. Picard, J.: On the existence of smooth densities for jump processes. Probab. Theory Relat. Fields 105, 481–511 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Priola, E., Zabczyk, J.: Densities for Ornstein–Uhlenbeck processes with jumps. Bull. Lond. Math. Soc. 41, 41–50 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  32. Rey-Bellet, L., Thomas, L.E.: Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators. Commun. Math. Phys. 215(1), 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sato, K.: Lévy Processes and Infinite Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  34. Simon, T.: On the absolute continuity of multidimensional Ornstein–Uhlenbeck processes. Probab. Theory Relat. Fields 151(1–2), 173–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Takeuchi, A.: The Malliavin calculus for SDE with jumps and the partially hypoelliptic problem. Osaka J. Math. 39, 523–559 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Watanabe, S.: Lectures on Stochastic Differential Equations and Malliavin Calculus. Tata Institute of Fundamental Research. Springer, Berlin (1984)

    Google Scholar 

  37. Wang, F.Y., Xu, L., Zhang, X.: Gradient estimates for SDEs driven by multiplicative Lévy noise. J. Funct. Anal. 269, 3195–3219 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, F.Y., Wang, J.: Harnack inequalities for stochastic equations driven by Lévy noise. J. Math. Anal. Appl. 410(1), 513–523 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. World Scientific Publishing, Singapore (2007)

    Book  MATH  Google Scholar 

  40. Zhang, X.: Derivative formula and gradient estimate for SDEs driven by \(\alpha \)-stable processes. Stoch. Proc. Appl. 123(4), 1213–1228 (2013)

    Article  MATH  Google Scholar 

  41. Zhang, X.: Densities for SDEs driven by degenerate \(\alpha \)-stable processes. Ann. Prob. 42(5), 1885–1910 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, X.: Fundamental solution of kinetic Fokker–Planck operator with anisotropic nonlocal dissipativity. SIAM J. Math. Anal. 46(3), 2254–2280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, X.: Fundamental solutions of nonlocal Hörmander’s operators II. Ann. Probab. doi:10.1214/16-AOP1102

Download references

Acknowledgments

The author is very grateful to Hua Chen, Zhen-Qing Chen, Zhao Dong, Xuhui Peng and Feng-Yu Wang for their quite useful conversations. This work was supported by NSFs of China (Nos. 11271294, 11325105) and Program for New Century Excellent Talents in University (NCET-10-0654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xicheng Zhang.

Additional information

Dedicated to the memory of Professor Paul Malliavin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Fundamental Solutions of Nonlocal Hörmander’s Operators. Commun. Math. Stat. 4, 359–402 (2016). https://doi.org/10.1007/s40304-016-0090-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-016-0090-5

Mathematics Subject Classification

Navigation