Skip to main content
Log in

Mean Element Propagations Using Numerical Averaging

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The long-term evolution characteristics and stability of an orbit are well characterized using a mean element propagation of the perturbed two body variational equations of motion. The averaging process eliminates short period terms leaving only secular and long period effects. In this study, a non-traditional approach is taken that averages the variational equations using adaptive numerical techniques and then numerically integrating the resulting equations of motion. Doing this avoids the Fourier series expansions and truncations required by the traditional analytic methods. The resultant numerical techniques can be easily adapted to propagations at most solar system bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The m-simplex capability of CUBPACK is not needed for this application.

  2. The initial mean elements were obtained from the initial osculating elements using a first-order near-identity transformation that was derived using the methods described in the companion paper ‘Transforming Mean and Osculating Elements using Numerical Methods,’ written by the author.

  3. The initial mean elements were obtained from the initial osculating elements using a first-order near-identity trans-formation that was derived using the methods described in the companion paper ‘Transforming Mean and Osculating Elements using Numerical Methods,’ also written by the author.

References

  1. Ely, T.A., Howell, K.C.: Long-term evolution of artificial satellite orbits due to resonant tesseral harmonics. J. Astronaut. Sci. 44(2), 167–190 (1996)

    Google Scholar 

  2. Ely, T.A., Howell, K.C.: Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni- solar perturbations. Dyn. Stab. Syst. 12 (4), 243–269 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cefola, P., Long, A.C., Holloway Jr., G.: The Long-Term Prediction of Artificial Satellite Orbits. In: AIAA 12th Aerospace Sciences Meeting, p 33 (1974)

  4. Cefola, P., McClain, W., Early, L., Green, A.: A semianalytical satellite theory for weak time-dependent perturbations. In: NASA Goddard Space Flight Center Flight Mechanics/Estimation Theory Symposium, pp 67–91 (1980)

  5. McClain, W.D.: A recursively formulated first-order semianalytic artificial satellite theory based on the generalized method of averaging, Vol. 1. Computer Sciences Corporation (1977)

  6. McClain, W.D.: A recursively formulated first-order semianalytic artificial satellite theory based on the generalized method of averaging, Vol. 2. Computer Sciences Corporation (1978)

  7. McClain, W.D., Long, A.C., Early, L.W.: Development and evaluation of a hybrid averaged orbit generator. In: AIAA/AAS Astrodynamics Conference (1978)

  8. Kwok, J.H.: Long-term orbit prediction for the Venus Radar Mapper Mission using an averaging method. In: AIAA/AAS Astrodynamics Conference (1984)

  9. Kwok, J.H.: The implementation of two satellite programs in a microcomputer environment. In: AIAA/AAS Astrodynamics Conference (1986)

  10. Uphoff, C.: Numerical averaging in orbit prediction. AIAA J. 11(11), 1512–1516 (1973)

    Article  MATH  Google Scholar 

  11. Lutzky, D., Uphoff, C.: Short-Periodic Variations and Second-Order Numerical Averaging. In: AIAA 13th Aerospace Sciences Meeting (1975)

  12. Genz, A., Cools, R.: An adaptive numerical cubature algorithm for simplices. ACM Trans. Math. Softw. 29(3), 297–308 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cools, R., Haegemans, A.: Algorithm 824: CUBPACK: a package for automatic cubature; framework description. ACM Trans. Math. Softw. 29(3), 287–296 (2003)

    Article  MATH  Google Scholar 

  14. Sanders, J., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd ed., no. 59. Springer (2007)

  15. Smyth, G.K.: Numerical Integration, Encyclopedia of Biostatistics, pp 3088–3095 (1998)

  16. Flanagen, S., Ely, T.A.: Navigation and Mission Analysis Software for the Next Generation of JPL Missions. In: 16th International Symposium on Space Flight Dynamics (2001)

  17. Krogh, F.T.: Predictor-corrector methods of high order with improved stability characteristics. J. ACM 13(3), 374–385 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  18. Krogh, F.T.: On testing a subroutine for the numerical integration of ordinary differential equations. J. ACM 20(4), 545–562 (1973)

    Article  MATH  Google Scholar 

  19. Krogh, F.T.: Variable Order Adams Method for Ordinary Differential Equations, 2010. Online. Available: http://mathalacarte.com/cb/mom.fcg/ya64

  20. Sharp, P.W.: N-body simulations: the performance of some integrators. ACM Trans. Math. Softw. 32(3), 375–395 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Danielson, D.A., Neta, B., Early, L.W.: Semi-Analytic Satellite Theory (SST): Mathematical Algorithms, no. NPS-MA-94–001, p 106. Naval Postgraduate School (1994)

  22. Konopliv, A.: Recent gravity models as a result of the lunar prospector mission. Icarus 150(1), 1–18 (2001)

    Article  Google Scholar 

  23. Lara, M.: Design of long-lifetime lunar orbits: A hybrid approach. Acta Astronaut. 69(3–4), 186–199 (2011)

    Article  Google Scholar 

  24. Cefola, P.: A recursive formulation for the tesseral disturbing function in equinoctial variables. In: AIAA/AAS Astrodynamics Conference (1976)

  25. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd ed., no. 38. Springer (1992)

  26. Gedeon, G.S.: Tesseral resonance effects on satellite orbits. Celest. Mech. 1, 167–189 (1969)

    Article  MATH  Google Scholar 

  27. NASA: PDS Geosciences Node: Gravity Models, 2014. Online. Available: http://pds-geosciences.wustl.edu/dataserv/gravity_models.htm. Accessed: 03-Oct-2014

  28. Konopliv, A.: Venus gravity: 180th degree and order model. Icarus 139(1), 3–18 (1999)

    Article  Google Scholar 

  29. Giacaglia, G.E.O.: The equations of motion of an artificial satellite in nonsingular variables. Celest. Mech. 15(2), 191–215 (1977)

    Article  MATH  Google Scholar 

  30. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemeris DE 421. Interplanet. Netw. Prog. Rep. 42(178) (2009)

  31. Milani, A., Nobili, A.M., Farinella, P.: Non-Gravitational Perturbations and Satellite Geodesy. Adam Hilger (1987)

  32. Izsak, I.G.: A note on perturbation theory. Astron. J. 68(8), 2 (1963)

    MathSciNet  Google Scholar 

  33. Green, A.J.: Orbit determination and prediction processes for low altitude satellites, Massachusetts Institute of Technology (1979)

  34. Vincent, M.A.: Explanation and History of the New Solar Cycle/Atmospheric Model Used in Mars Planetary Protection Analysis. In: Advances in the Astronautical Sciences, Vol. 109, pp 1599–1614 (2001)

  35. Vincent, M.A., Ely, T.A., Sweetser, T.H.: Plan and Progress for Updating the Models Used for Orbiter Lifetime Analysis. In: Advances in the Astronautical Sciences, Vol. 142, pp 1835–1849 (2011)

  36. Justus, C.G., James, B.F., Bougher, S.W., Bridger, A.F.C., Haberle, R.M., Murphy, J.R., Engel, S.: Mars-GRAM 2000: A Mars atmospheric model for engineering applications. Adv. Sp. Res. 29(2), 193–202 (2002)

    Article  Google Scholar 

  37. Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.-N., Sjogren, W.L.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182(1), 23–50 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Ely.

Additional information

A prior version of this paper was presented at the AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, Pennsylvannia, August 2009.

Appendix: : Direct Equinoctal Elements And Partials

Appendix: : Direct Equinoctal Elements And Partials

The direct equinoctial elements as functions of the classical elements \(\left \{ {a,e,i,{\Omega } ,\omega ,M} \right \}\) can be defined as

$$ \begin{array}{l} a\equiv a, \\ h\equiv e\sin \left( {\omega +{\Omega}} \right), \\ k\equiv e\cos \left( {\omega +{\Omega}} \right), \\ p\equiv \tan \left( {\frac{i}{2}} \right)\sin {\Omega} , \\ q\equiv \tan \left( {\frac{i}{2}} \right)\cos {\Omega} , \\ \lambda \equiv M+\omega +{\Omega} . \end{array} $$
(48)

Some intermediate quantities are now defined. The equinoctial reference frame is composed of three orthogonal unit vectors \(\left \{ {\text {\textbf {f}},\text {\textbf {g}},\text {\textbf {w}}} \right \}\) where

  1. 1.

    f and g are in the satellite orbit plane,

  2. 2.

    w is along the orbit normal,

  3. 3.

    The angle between f and the ascending node is equal to the longitude of the ascending node Ω.

Using these properties the unit vectors \(\left \{ {\text {\textbf {f}},\text {\textbf {g}},\text {\textbf {w}}} \right \}\)are obtained using

$$ \begin{array}{l} \text{\textbf{f}}=\frac{1}{1+p^{2}+q^{2}}\left[ {{\begin{array}{l} {1-p^{2}+q^{2}}\\ {2pq}\\ {-2p} \end{array}} } \right], \\ \text{\textbf{g}}=\frac{1}{1+p^{2}+q^{2}}\left[ {{\begin{array}{l} {2pq} \hfill \\ {1+p^{2}-q^{2}}\\ {2q} \end{array}} } \right], \\ \text{\textbf{w}}=\frac{1}{1+p^{2}+q^{2}}\left[ {{\begin{array}{l} {2p}\\ {-2q}\\ {1-p^{2}-q^{2}} \end{array}} } \right]. \end{array} $$
(49)

From the position r and velocity \(\dot {\textbf {r}}\) vectors the following components \(\left \{ {X,Y,\dot {{X}},\dot {{Y}}} \right \}\)can be computed

$$ \begin{array}{c} \text{\textbf{r}}\equiv X \textbf{f}+Y \textbf{g}\\ \dot{\textbf{r}}\equiv \dot{X}\textbf{f}+\dot{{Y}} \textbf{g} \end{array}\\ \to \begin{array}{c} X=\textbf{r}\cdot \textbf{f}, Y= \textbf{r}\cdot \textbf{g}\\ \dot{{X}}= \textbf{r} \cdot \textbf{f},\dot{Y}= \textbf{r}\cdot \textbf{g} \end{array}. $$
(50)

Finally the partials identified in Gauss’ (7) are

$$\begin{array}{@{}rcl@{}} \frac{\partial a}{\partial{\dot{\textbf{r}}}}&=&\frac{2a^{2} \dot{\textbf{r}}}{\mu} , \\ \frac{\partial h}{\partial{\dot{\textbf{r}}}}&=&\frac{\left({2X\dot{Y}-\dot{X}Y}\right)\textbf{f}-X \dot{X}\textbf{g}}{\mu} +\frac{k\left( {qY-pX} \right)\textbf{w}}{AB}, \\ \frac{\partial k}{\partial{\dot{\textbf{r}}}}&=&\frac{\left({2X\dot{Y}-\dot{X}Y}\right)\textbf{f}-Y\dot{Y}\textbf{g}} {\mu}-\frac{h\left( {qY-pX} \right)\textbf{w}}{AB}, \\ \frac{\partial p}{\partial{\dot{\textbf{r}}}}&=&\frac{CY\textbf{w}}{2AB}, \\ \frac{\partial q}{\partial{\dot{\textbf{r}}}}&=&\frac{CX\textbf{w}}{2AB}, \\ \frac{\partial \lambda} {\partial{\dot{\textbf{r}}}}&=&-\frac{2 \textbf{r}}{A}+\frac{k\frac{\partial h}{\partial \dot{\textbf{r}}}-h\frac{\partial k}{\partial{\dot{\textbf{r}}}}}{1+B} +\frac{\left({qY-pX}\right)\textbf{w}}{A}, \end{array} $$
(51)

Where the following definitions apply

$$\begin{array}{@{}rcl@{}} A=na^{2}=\sqrt {\mu a}, \\ B=\sqrt {1-h^{2}-k^{2}}, \\ C=1+p^{2}+q^{2}. \end{array} $$
(52)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ely, T.A. Mean Element Propagations Using Numerical Averaging. J of Astronaut Sci 61, 275–304 (2014). https://doi.org/10.1007/s40295-014-0020-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-014-0020-2

Keywords

Navigation