Skip to main content
Log in

How to Measure 24-hour Central Blood Pressure and Its Potential Clinical Implications

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

The evaluation of 24-hour central blood pressure (24h cBP) combines the cBP non-invasive assessment with the 24-h ambulatory BP measurement. The major strength of the 24-h cBP evaluation is the ability to assess the degree of circadian changes between central and peripheral BP, namely 24-h BP amplification. This allows an accurate quantification of the degree of spatial and temporal BP variability in each single individual. BP amplification depends from a number of factors, such as the interaction between pressure and flow pulsatile motions, vasomotor tone, arterial tapering and other physiological and anthropometrical determinants. The assessment of 24-h BP amplification, a relatively pressure-independent parameter, may be helpful in better refining the risk of organ damage and future CV events over traditional measures of office and 24-h brachial BP. Currently, only few devices enable the assessment of 24-h cBP. These devices are based on peripheral (brachial or radial) BP waveform detection, and reconstruction of central BP waveform through mathematical models. The estimation of 24-h cBP imputed from multivariate regression equations was also proposed. Clinical data are still scarce and, although suggesting a possible superiority of 24-h cBP over brachial BP in the association with markers of organ damage, they are limited by methodological and technical aspects. There is urgent need of a standardized methodology and rigorous validation protocols for the 24-h cBP assessment. The field of 24-h cBP measurement still requires significant advancements of scientific knowledge before its introduction into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Task Force Members. ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;2013(31):1281–357.

    Article  Google Scholar 

  2. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  3. Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362:1527–35.

    Article  CAS  PubMed  Google Scholar 

  4. Schillaci G, Verdecchia P, Sacchi N, Bruni B, Benemio G, Pede S, Porcellati C. Clinical relevance of office underestimation of usual blood pressure in treated hypertension. Am J Hypertens. 2000;13:523–8.

    Article  CAS  PubMed  Google Scholar 

  5. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Pede S, Porcellati C. Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension. Hypertension. 1998;32:983–8.

    Article  CAS  PubMed  Google Scholar 

  6. Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51:55–61.

    Article  CAS  PubMed  Google Scholar 

  7. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5:93–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, Kass DA. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95:1827–36.

    Article  CAS  PubMed  Google Scholar 

  9. McEniery CM, Yasmin, McDonnell B, Munnery M, Wallace SM, Rowe CV, Cockcroft JR, Wilkinson IB, Anglo-Cardiff Collaborative Trial Investigators. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008;51:1476–82.

    Article  CAS  PubMed  Google Scholar 

  10. Narayan O, Casan J, Szarski M, Dart AM, Meredith IT, Cameron JD. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens. 2014;32:1727–40.

    Article  CAS  PubMed  Google Scholar 

  11. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, Umans JG, Howard BV. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197–203.

    Article  CAS  PubMed  Google Scholar 

  12. Boutouyrie P, Bussy C, Lacolley P, Girerd X, Laloux B, Laurent S. Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation. 1999;100:1387–93.

    Article  CAS  PubMed  Google Scholar 

  13. Roman MJ, Okin PM, Kizer JR, Lee ET, Howard BV, Devereux RB. Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: the Strong Heart Study. J Hypertens. 2010;28:384–8.

    Article  CAS  PubMed  Google Scholar 

  14. Covic A, Goldsmith DJ, Panaghiu L, Covic M, Sedor J. Analysis of the effect of hemodialysis on peripheral and central arterial pressure waveforms. Kidney Int. 2000;57:2634–43.

    Article  CAS  PubMed  Google Scholar 

  15. Hales S. Statical essays: containing haemastaticks. An account of some hydraulick and hydmstatical experiments made on the blood and blood vessels of animals, vol 2. London: Royal Society of London; 1733.

  16. Booth J. A short history of blood pressure measurement. Proc R Soc Med. 1977;70:793–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hurthle K. Ueber den Ursprungsort der sekundaren Wellen der Pulscurve. Arch Physiol. 1890;47:17.

    Article  Google Scholar 

  18. Frank O. Der Puls in den Arterien. Ztschr Biol. 1905;46:441.

  19. Cournand A, Ranges A. Catheterization of the right auricle in man. Proc Soc Exp Biol Med. 1941;46:462–6.

    Article  Google Scholar 

  20. Kroeker EJ, Wood EH. Beat-to-beat alterations in relationship of simultaneously recorded central and peripheral arterial pressure pulses during Valsalva manoeuver and prolonged expiration in man. J Appl Physiol. 1956;8:483–94.

    CAS  PubMed  Google Scholar 

  21. Snellen HA, Marey EJ. Cardiology: physiologist and pioneer of technology (1830–1904). Rotterdam: Kooyker Scientific Publications; 1980.

  22. Riva-Rocci S. Un nuovo sfigmomanometro. Gazz Med Torino. 1896;50–51:1002–7.

    Google Scholar 

  23. Korotkov NS. Concerning the methods of blood pressure measurement (from the clinic of S. P. Fedorov). Proc Emper Mil Med Acad St Petersburg 1905;11:365–7.

  24. Geddes LA, Combs W, Denton W, Whistler SJ, Bourland JD. Indirect mean arterial pressure in the anesthetized dog. Am J Physiol. 1980;238:H664–6.

    CAS  PubMed  Google Scholar 

  25. O’Brien E, Sheridan J, Browne T, Conroy R, O’Malley K. Validation of the SpaceLabs 90202 ambulatory blood pressure recorder. J Hypertens. 1989;7(Suppl 6):S388–9.

    Google Scholar 

  26. Kelly R, Hayward C, Ganis J, Daley J, Avolio A, O’Rourke M. Noninvasive registration of the arterial pressure pulse waveform using high-fidelity applanation tonometry. J Vasc Med Biol. 1989;1:142–9.

    Google Scholar 

  27. Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries. 6th ed. London: Hodder Arnold; 2011.

    Google Scholar 

  28. Pauca A, O’Rourke M, Kon N. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–7.

    Article  CAS  PubMed  Google Scholar 

  29. O’Rourke MF. Influence of ventricular ejection on the relationship between central aortic and brachial pressure pulse in man. Cardiovasc Res. 1970;4:291–300.

    Article  PubMed  Google Scholar 

  30. Wassertheurer S, Kropf J, Weber T, van der Giet M, Baulmann J, Ammer M, Hametner B, Mayer CC, Eber B, Magometschnigg D. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens. 2010;24:498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.

    Article  CAS  PubMed  Google Scholar 

  32. Pucci G, Cheriyan J, Hubsch A, Hickson SS, Gajendragadkar PR, Watson T, O’Sullivan M, Woodcock-Smith J, Schillaci G, Wilkinson IB, McEniery CM. Evaluation of the Vicorder, a novel cuff-based device for the noninvasive estimation of central blood pressure. J Hypertens. 2013;31:77–85.

  33. Williams B, Lacy PS, Yan P, Hwee CN, Liang C, Ting CM. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an n-point moving average method. J Am Coll Cardiol. 2011;57:951–61.

    Article  PubMed  Google Scholar 

  34. Protogerou AD, Argyris A, Nasothimiou E, Vrachatis D, Papaioannou TG, Tzamouranis D, Blacher J, Safar ME, Sfikakis P, Stergiou GS. Feasibility and reproducibility of noninvasive 24-h ambulatory aortic blood pressure monitoring with a brachial cuff-based oscillometric device. Am J Hypertens. 2012;25:876–82.

    Article  PubMed  Google Scholar 

  35. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–62.

    Article  CAS  PubMed  Google Scholar 

  36. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure–flow and pressure–volume relations in humans. Hypertension. 2010;56:563–70.

    Article  CAS  PubMed  Google Scholar 

  37. Pauca AL, Wallenhaupt SL, Kon ND, Tucker WY. Does radial artery pressure accurately reflect aortic pressure? Chest. 1992;102:1193–8.

    Article  CAS  PubMed  Google Scholar 

  38. Westerhof N, O’Rourke MF. Haemodynamic basis for the development of left ventricular failure in systolic hypertension and for its logical therapy. J Hypertens. 1995;13:943–52.

    Article  CAS  PubMed  Google Scholar 

  39. Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension. 2012;60:778–85.

    Article  CAS  PubMed  Google Scholar 

  40. Baksi AJ, Treibel TA, Davies JE, Hadjiloizou N, Foale RA, Parker KH, Francis DP, Mayet J, Hughes AD. A meta-analysis of the mechanism of blood pressure change with aging. J Am Coll Cardiol. 2009;54:2087–92.

    Article  PubMed  Google Scholar 

  41. Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Reference Values for Arterial Measurements Collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35:3122–33.

    Article  PubMed  Google Scholar 

  42. Roman MJ, Devereux RB. Association of central and peripheral blood pressures with intermediate cardiovascular phenotypes. Hypertension. 2014;63:1148–53.

    Article  CAS  PubMed  Google Scholar 

  43. Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension. 2016;67:183–90.

    Article  CAS  PubMed  Google Scholar 

  44. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  PubMed  Google Scholar 

  45. Cheng HM, Chuang SY, Sung SH, Yu WC, Pearson A, Lakatta EG, Pan WH, Chen CH. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J Am Coll Cardiol. 2013;62:1780–7.

    Article  PubMed  Google Scholar 

  46. Camacho F, Avolio A, Lovell NH. Estimation of pressure pulse amplification between aorta and brachial artery using stepwise multiple regression models. Physiol Meas. 2004;25:879–89.

    Article  CAS  PubMed  Google Scholar 

  47. Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, Salvi P, Smulyan H, Safar ME. Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol. 2010;55:1032–7.

    Article  PubMed  Google Scholar 

  48. Regnault V, Thomas F, Safar ME, Osborne-Pellegrin M, Khalil RA, Pannier B, Lacolley P. Sex difference in cardiovascular risk: role of pulse pressure amplification. J Am Coll Cardiol. 2012;59:1771–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bursztyn M, Norton GR, Ben-Dov IZ, Booysen HL, Sibiya MJ, Sareli P, Woodiwiss AJ. Aortic pulse pressure amplification imputed from simple clinical measures adds to the ability of brachial pressure to predict survival. Am J Hypertens. 2016;29:754–62.

    Article  PubMed  Google Scholar 

  50. Pucci G, Battista F, Anastasio F, Crapa ME, Sanesi L, Schillaci G. Age-dependent association of 24-hour peripheral and central pulse pressures with stroke volume. Artery Res. 2015;12:39.

    Article  Google Scholar 

  51. Protogerou AD, Argyris AA, Papaioannou TG, Kollias GE, Konstantonis GD, Nasothimiou E, Achimastos A, Blacher J, Safar ME, Sfikakis PP. Left-ventricular hypertrophy is associated better with 24-h aortic pressure than 24-h brachial pressure in hypertensive patients: the SAFAR study. J Hypertens. 2014;32:1805–14.

  52. Boggia J, Luzardo L, Lujambio I, Sottolano M, Robaina S, Thijs L, Olascoaga A, Noboa O, Struijker-Boudier HA, Safar ME, Staessen JA. The diurnal profile of central hemodynamics in a general uruguayan population. Am J Hypertens. 2016;29:737–46.

    Article  PubMed  Google Scholar 

  53. Zhang Y, Kollias G, Argyris AA, Papaioannou TG, Tountas C, Konstantonis GD, Achimastos A, Blacher J, Safar ME, Sfikakis PP, Protogerou AD. Association of left ventricular diastolic dysfunction with 24-h aortic ambulatory blood pressure: the SAFAR study. J Hum Hypertens. 2015;29:442–8.

    Article  CAS  PubMed  Google Scholar 

  54. Wassertheurer S, Baumann M. Assessment of systolic aortic pressure and its association to all cause mortality critically depends on waveform calibration. J Hypertens. 2015;33:1884–8.

  55. Raamat R, Talts J, Jagomägi K, Kivastik J. Accuracy of some algorithms to determine the oscillometric mean arterial pressure: a theoretical study. Blood Press Monit. 2013;18:50–6.

    Article  PubMed  Google Scholar 

  56. Williams B, Lacy PS, Baschiera F, Brunel P, Düsing R. Novel description of the 24-hour circadian rhythms of brachial versus central aortic blood pressure and the impact of blood pressure treatment in a randomized controlled clinical trial: the Ambulatory Central Aortic Pressure (AmCAP) Study. Hypertension. 2013;61:1168–76.

    Article  CAS  PubMed  Google Scholar 

  57. Theilade S, Lajer M, Hansen TW, Joergensen C, Persson F, Andrésdottir G, Reinhard H, Nielsen SE, Lacy P, Williams B, Rossing P. 24-hour central aortic systolic pressure and 24-hour central pulse pressure are related to diabetic complications in type 1 diabetes—a cross-sectional study. Cardiovasc Diabetol. 2013;12:122.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bednarek A, Jankowski P, Olszanecka A, Windak A, Kawecka-Jaszcz K, Czarnecka D. 24-hour central blood pressure and intermediate cardiovascular phenotypes in untreated subjects. Am J Cardiovasc Dis. 2014;4:177–87.

    PubMed  PubMed Central  Google Scholar 

  59. Pucci G, Battista F, Anastasio F, Sanesi L, Gavish B, Butlin M, Avolio A, Schillaci G. Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform. J Hypertens. 2016;34:1091–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors had access to the data and a role in writing the manuscript.

Corresponding author

Correspondence to Giacomo Pucci.

Ethics declarations

Potential Conflicts of Interest

None.

Sources of Funding

The position of Giacomo Pucci as an Adjunct Assistant Professor at the University of Perugia was funded by a grant from the Fondazione Cassa di Risparmio di Terni e Narni.

Statement of Human Rights

For this type of study formal consent is not required.

Informed Consent

For this type of study informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pucci, G., Battista, F., Crocetti, A. et al. How to Measure 24-hour Central Blood Pressure and Its Potential Clinical Implications. High Blood Press Cardiovasc Prev 24, 141–148 (2017). https://doi.org/10.1007/s40292-017-0202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-017-0202-7

Keywords

Navigation