Skip to main content
Log in

Left Ventricular Hypertrophy and Obesity: Only a Matter of Fat?

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Obesity can be regarded as an energy balance disorder in which inappropriate expansion and dys-function of adipose tissue lead to unfavorable outcomes. Even in the absence of hypertension, adiposity induces structural and functional changes in the heart through hemodynamic and non hemodynamic factors. In the “obese” heart, besides the growth of cardiomyocytes, interstitial fat infiltration and triglyceride accumulation in the contractile elements importantly contribute to left-ventricular mass (LVM) accrual, hypertrophy (LVH) and geometric pattern. In harmony with this, the likelihood of LVH is greater in either obese normotensive or hypertensive individuals than in their non-obese counterparts. Interestingly, recent observations highlight the increasing prevalence of the “concentric” (ie, combined remodeling and hypertrophy), rather than “eccentric” pattern of LV geometry in obesity. Nonetheless, obesity is linked with lack of decrease, or even increase, of LVM over time, independently of blood pressure control and hypertensive treatment. Although obesity-related LV changes result in progressive systolic and diastolic heart failure, the assessment of LVM and LVH in obese individuals still remains a difficult task. In this scenario, it is tempting to speculate that therapeutic interventions for reversal of LVH in obesity should either overcome the “non-hemodynamic” factors or reduce the hemodynamic load. Indeed, weight loss, either achieved by lifestyle changes or bariatric procedures, decreases LVM and improves LV function regardless of blood pressure status. These and other mechanistic insights are discussed in this review, which focuses on “adipose dysfunction” as potential instigator of, and putative therapeutic target for, LVH regression in the setting of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO Obesity: preventing and managing the global epidemic. Report of a WHO Consultation on Obesity. Geneva: World Health Organisation; 1998.

  2. NIH Conference. Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Ann Intern Med. 1991;115:956–61.

  3. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341(15):1097–105.

    CAS  PubMed  Google Scholar 

  4. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    PubMed  Google Scholar 

  5. Sjostrom LV. Mortality of severely obese subjects. Am J Clin Nutr. 1992;55(2 Suppl):516S–23S.

    CAS  PubMed  Google Scholar 

  6. Gomez-Ambrosi J, Silva C, Galofre JC, Escalada J, Santos S, Millan D, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes (Lond). 2012;36(2):286–94.

    CAS  Google Scholar 

  7. Kuk JL, Ardern CI, Church TS, Sharma AM, Padwal R, Sui X, et al. Edmonton Obesity Staging System: association with weight history and mortality risk. Appl Physiol Nutr Metab. 2011;36(4):570–6.

    PubMed  Google Scholar 

  8. Padwal RS, Pajewski NM, Allison DB, Sharma AM. Using the Edmonton obesity staging system to predict mortality in a population-representative cohort of people with overweight and obesity. CMAJ. 2011;183(14):E1059–66.

    PubMed  PubMed Central  Google Scholar 

  9. Iacobellis G, Sharma AM. Cardiovascular disease and obesity. In: Williams G, Fruhbeck G, editors. Obesity, science to practice. USA: Wiley-Blackwell Ltd; 2009. p. 287–320.

    Google Scholar 

  10. Chadwick J, Mann W. The medical works of Hyppocrates. Aphorisms, sect. II 44. Springfield: Charles C Thomas Co; 1950. p. 154.

  11. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113(6):898–918.

    PubMed  Google Scholar 

  12. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;14(444):881–7.

    Google Scholar 

  13. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94:206–18.

    CAS  PubMed  Google Scholar 

  14. Andersson CX, Gustafson B, Hammarstedt A, Hedjazifar S, Smith U. Inflamed adipose tissue, insulin resistance and vascular injury. Diabetes Metab Res Rev. 2008;24:595–603.

    CAS  PubMed  Google Scholar 

  15. Klöting N, Fasshauer M, Dietrich A, Kovacs P, Schön M, Kern M, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010;299:E506–15.

    PubMed  Google Scholar 

  16. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F. Prevalence of uncomplicated obesity in an Italian obese population. Obes Res. 2005;13:1116–22.

    PubMed  Google Scholar 

  17. Calori G, Lattuada G, Piemonti L, Garancini MP, Ragogna F, Villa M, et al. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona Study. Diabetes Care. 2011;34:210–5.

    PubMed  PubMed Central  Google Scholar 

  18. Iacobellis G. True uncomplicated obesity is not related to increased left ventricular mass and systolic dysfunction. J Am Coll Cardiol. 2004;441:2257.

    Google Scholar 

  19. Sun K, Christine M, Kusminski M, Scherer P. Adipose tissue remodelling in obesity. J Clin Invest. 2011;121:2094–3101.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cinti S. The adipose organ at a glance. Dis Model Mech. 2012;55:588–94.

    Google Scholar 

  21. Stefan N, Kantartzis S, Machann J, Schick F, Thamer C, Ritting K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168:1609–16.

    PubMed  Google Scholar 

  22. Lundgren M, Svensson M, Lindmark S, Rendtrom M, Ruge T, Eriksson JW. Fat cell enlargement is an independent marker of insulin resistance and “hyperleptinemia”. Diabetologia. 2007;50:625–33.

    CAS  PubMed  Google Scholar 

  23. Weyer C, Foley J, Bogardus C, Howard B, Ravussin E. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia. 2000;43:1498–506.

    CAS  PubMed  Google Scholar 

  24. Hammarstedt A, Jansson PA, Wesslau C, Yang X, Smith U. Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochem Biophys Res Commun. 2003;301:578–82.

    CAS  PubMed  Google Scholar 

  25. Dubois SG, Heilbronn LK, Smith SR, Albu JB, Kelley DE, Ravussin E. Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity (Silver Spring). 2006;14:1543–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. van Tienen FH, van der Kallen CJ, Lindsey PJ, Wanders RJ, van Greevenbroek MM, Smeets HJ. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity. Int J Obes (Lond). 2011;35:1154–64.

    Google Scholar 

  27. Wang MY, Grayburn P, Chen S, Ravazzola M, Orci L, Unger RH. Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome. Proc Natl Acad Sci USA. 2008;105:6139–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arner P, Arner E, Hammarstedt A, Smith U. Genetic predisposition for Type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PLoS One. 2011;6:e18284.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gustafson B, Smith U. The Wnt inhibitor Dicckopf 1 and bone morphogenetic protein 4 rescue adipogenesis in hypertrophic obesity in human. Diabetes. 2012;61:1217–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Park HT, Lee ES, Cheon YP, Lee DR, Yang KS, Kim YT, et al. The relationship between fat depot-specific preadipocyte differentiation and metabolic syndrome in obese women. Clin Endocrinol (Oxf). 2012;76:59–66.

    CAS  PubMed  Google Scholar 

  31. Smith U. Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance—is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord. 2002;26:897–904.

    CAS  PubMed  Google Scholar 

  32. Gustafson B, Hammarstedt A, Andersson CX, Smith U. Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2276–83.

    CAS  PubMed  Google Scholar 

  33. Murdolo G, Smith U. The dysregulated adipose tissue: a connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis. Nutr Metab Cardiovasc Dis. 2006;16(Suppl 1):S35–8.

    PubMed  Google Scholar 

  34. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case–control study. Lancet. 2005;366:1640–9.

    PubMed  Google Scholar 

  35. Iacobellis G, Ribaudo MC, Zappaterreno A, Vecci E, Tiberti C, Di Mario U, et al. Relationship of insulin sensitivity and left ventricular mass in uncomplicated obesity. Obes Res. 2003;11:518–24.

    PubMed  Google Scholar 

  36. Iacobellis G, Sharma AM. Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Curr Pharm Des. 2007;13:2180–4.

    CAS  PubMed  Google Scholar 

  37. Iacobellis G, Sharma AM. Obesity and the heart: redefinition of the relationship. Obes Rev. 2007;8:35–9.

    CAS  PubMed  Google Scholar 

  38. Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011;22:450–7.

    CAS  PubMed  Google Scholar 

  39. Salgado-Somoza A, Teijeira-Fernandez E, Rubio J, Couso E, Gonzalez-Juanatey JR, Eiras S. Coronary artery disease is associated with higher epicardial retinol-binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clin Endocrinol (Oxf). 2011;76:51–8.

    Google Scholar 

  40. Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab. 2006;91:4620–7.

    CAS  PubMed  Google Scholar 

  41. Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005;29:251–5.

    CAS  PubMed  Google Scholar 

  42. Prati F, Arbustini E, Labellarte A, Sommariva L, Pawlowski T, Manzoli A, et al. Eccentric atherosclerotic plaques with positive remodelling have a pericardial distribution: a permissive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descending artery lesions. Eur Heart J. 2003;24:329–36.

    CAS  PubMed  Google Scholar 

  43. Iacobellis G, Lonn E, Lamy A, Singh N, Sharma AM. Epicardial fat thickness and coronary artery disease correlate independently of obesity. Int J Cardiol. 2011;146:452–4.

    PubMed  Google Scholar 

  44. Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity. 2008;16:1693–7.

    PubMed  Google Scholar 

  45. Gastaldelli A, Basta G. Ectopic fat and cardiovascular disease: what is the link? Nutr Metab Cardiovasc Dis. 2010;20:481–90.

    CAS  PubMed  Google Scholar 

  46. Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet. 2000;26:13.

    CAS  PubMed  Google Scholar 

  47. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNT signalling. Trends Endocrinol Metab. 2009;20:16–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sethi JK. Activatin’ human adipose progenitors in obesity. Diabetes. 2010;59(10):2354–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. McGavock J, Victor R, Unger M, Szczepaniak L. Adiposity if the heart, revised. Ann Intern Med. 2006;144:517–24.

    CAS  PubMed  Google Scholar 

  50. Cuspidi C, Rescaldani M, Sala C, Grassi G. Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens. 2013;32:16–25.

    Google Scholar 

  51. Cuspidi C, Rescaldani M, Tadic M, Sala C, Grassi G. Effects of bariatric surgery on cardiac structure and function: a systematic review and meta-analysis. Am J Hypertens. 2013;27:146–56.

    PubMed  Google Scholar 

  52. Smith HL, Willius FA. Adiposity of the heart. Arch Intern Med. 1933;52:410–28.

    Google Scholar 

  53. Soteriades E, Targino M, Talias M, Hauser R, Kawachi I, Christiani D, et al. Obesity and risk of LVH and ECG abnormalities in US fire fighters. J Occup Environ Med. 2011;53:867–71.

    PubMed  Google Scholar 

  54. de Simone G, Devereux R, Roman M, Alderman M, Laragh J. Relation of obesity to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension. 1994;23:600–6.

    PubMed  Google Scholar 

  55. Iacobellis G, Ribaudo MC, Leto G, Zappaterreno A, Vecci E, Di Mario U, et al. Influence of excess fat on cardiac morphology and function: study in uncomplicated obesity. Obes Res. 2002;10:767–73.

    PubMed  Google Scholar 

  56. de Simone G, Izzo R, De Luca N, Gerdts E. Left ventricular geometry in obesity: is it what we expect? Nutr Metab Cardiovasc Dis. 2013;23:905–12.

    PubMed  Google Scholar 

  57. Du Cailar G, Ribstein J, Daures JP, Mimran A. Sodium and left ventricular mass in untreated hypertensive and normotensive subjects. Am J Physiol. 1992;263:H177–81.

    PubMed  Google Scholar 

  58. du Cailar G, Ribstein J, Mimran A. Dietary sodium and target organ damage in essential hypertension. Am J Hypertens. 2002;15:222–9.

    PubMed  Google Scholar 

  59. Strazzullo P, D’Elia L, Kandala N, Cappuccio F. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.

    PubMed  PubMed Central  Google Scholar 

  60. Chinali M, de Simone G, Roman MJ, Lee ET, Best LG, Howard BV, et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart Study. J Am Coll Cardiol. 2006;47:2267–73.

    PubMed  Google Scholar 

  61. Wong C, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick T. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 2004;110:3081–7.

    PubMed  Google Scholar 

  62. de Simone G, Palmieri V, Bella JN, Celentano A, Hong Y, Oberman A, et al. Association of left ventricular hypertrophy with metabolic risk factors: the HyperGEN study. J Hypertens. 2002;20:323–31.

    PubMed  Google Scholar 

  63. Verdecchia P, Reboldi G, Schillaci G, Borgioni C, Ciucci A, Telera MP, et al. Circulating insulin and insulin growth factor-1 are independent determinants of left ventricular mass and geometry in essential hypertension. Circulation. 1999;100:1802–27.

    CAS  PubMed  Google Scholar 

  64. Devereux R, Roman M. Hypertensive cardiac hypertrophy: pathophysiologic and clinical characteristics. In: Laragh JH, Brenner BM, editors. Hypertension: pathophysiology, diagnosis and management. 2nd ed. New York: Raven Press Ltd; 1995. p. 409–24.

    Google Scholar 

  65. Levy D, Larson M, Vasan R, Kannel W, Ho K. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.

    CAS  PubMed  Google Scholar 

  66. Verdecchia P, de Simone G. The heart in hypertension. A review. G Ital Cardiol. 1999;29:769–80.

    CAS  PubMed  Google Scholar 

  67. Garcia J, Incerpi E. Factors and mechanisms involved in left ventricular hypertrophy and the anti-hypertrophic role of nitric oxide. Arq Bras Cardiol. 2008;90:409–16.

    PubMed  Google Scholar 

  68. de Simone G, Devereux RB. Method errors or unexplained biological information? Hypertension. 2010;56:e177–8.

    PubMed  PubMed Central  Google Scholar 

  69. de Simone G, Daniels S, Devereux R, Meyer R, Roman M, de Divitiis O, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20:1251–60.

    PubMed  Google Scholar 

  70. de Simone G, Kizer J, Chinali M, Roman M, Bella J, Best L, et al. Normalization for body size and population attributable risk of left ventricular hypertrophy: the strong heart study. Am J Hypertens. 2005;18:191–6.

    PubMed  Google Scholar 

  71. Chirinos JA, Segers P, De Buyzere ML, Kronmal RA, Raja MW, De Bacquer D, et al. Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56:91–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chirinos JA, Gillebert TC, Segers P, De Buyzere ML, Kronmal R, Raja MW, et al. Response to method errors or unexplained biological information? Hypertension. 2011;57:e9–10.

    CAS  PubMed  Google Scholar 

  73. Paajanen T, Oksala N, Kuukasjarvi P, Karhunen P. Short stature is associated with coronary heart disease: a systematic review of the literature and a meta-analysis. Eur Heart J. 2010;31:1802–9.

    PubMed  Google Scholar 

  74. de Simone G, Devereux R, Chinali M, Roman M, Barac A, Panza J, et al. Sex differences in obesity-related changes in left ventricular morphology: the strong heart study. J Hypertens. 2011;29:1431–8.

    PubMed  PubMed Central  Google Scholar 

  75. Schillaci G, Verdecchia P, Borgioni C, Ciucci A, Porcellati C. Early cardiac changes after menopause. Hypertension. 1998;32:764–9.

    CAS  PubMed  Google Scholar 

  76. Roubenoff R. Sarcopenic obesity: the confluence of two epidemics. Obes Res. 2004;12:887–8.

    PubMed  Google Scholar 

  77. de Simone G, Pasanisi F, Ferrara A, Roman M, Lee E, Contaldo F, et al. Relative fat-free mass deficiency and left ventricular adaptation to obesity: The Strong Heart Study. Int J Cardiol. 2013;168:729–33.

    PubMed  PubMed Central  Google Scholar 

  78. Carpenter H. Myocardial fat infiltration. Am Heart J. 1962;63:491–6.

    CAS  PubMed  Google Scholar 

  79. Chinali M, Aurigemma G. Refining patterns of left ventricular hypertrophy using cardiac MRI: “brother, can you spare a paradigm?”. Circ Cardiovasc Imaging. 2010;3:129–31.

    PubMed  Google Scholar 

  80. Lund B, Gohlke-Barwolf C, Cramariuc D, Rossebo A, Rieck A, Gerdts E. Effect of obesity on left ventricular mass and systolic function in patients with asymptomatic aortic stenosis (a simvastatin ezetimibe in aortic stenosis [SEAS] substudy). Am J Cardiol. 2010;105:1456–60.

    PubMed  Google Scholar 

  81. de Simone G, Devereux RB, Chinali M, Roman MJ, Welty TK, Lee ET, et al. Left ventricular mass and incident hypertension in individuals with initial optimal blood pressure: the Strong Heart Study. J Hypertens. 2008;26:1868–74.

    PubMed  PubMed Central  Google Scholar 

  82. Turkbey E, McClelland R, Kronmal R, Burke G, Bild D, Tracy R, et al. The impact of obesity on the left ventricle: the multi-ethnic study of atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3:266–74.

    PubMed  PubMed Central  Google Scholar 

  83. Woodiwiss A, Libhaber C, Majane O, Libhaber E, Maseko M, Norton G. Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am J Hypertens. 2008;21:1144–51.

    PubMed  Google Scholar 

  84. Asharafian H, Athanasiou T, le Roux C. Heart remodeling and obesity: the complexities and variations of cardiac geometry. Heart. 2011;97:171–2.

    Google Scholar 

  85. Celentano A, Palmieri V, Esposito ND, Pietropaolo I, Crivaro M, Mureddu GF, et al. Inappropriate left ventricular mass in normotensive and hypertensive patients. Am J Cardiol. 2001;87(361–363):A10.

    Google Scholar 

  86. Bo S, Mandrile C, Milanesio N, Pagani A, Gentile L, Gambino R, et al. Is left ventricular hypertrophy a low-level inflammatory state? A population-based cohort study. Nutr Metab Cardiovasc Dis. 2012;22:668–76.

    CAS  PubMed  Google Scholar 

  87. Pickering T, Davidson K, Gerin W, Schwartz J. Masked hypertension. Hypertension. 2002;40:795–6.

    CAS  PubMed  Google Scholar 

  88. Collis T, Devereux RB, Roman MJ, de Simone G, Yeh J, Howard BV, et al. Relations of stroke volume and cardiac output to body composition: the strong heart study. Circulation. 2001;103:820–5.

    CAS  PubMed  Google Scholar 

  89. Aurigemma G, de Simone G, Fitzgibbons T. Cardiac remodeling in obesity. Circ Cardiovasc Imaging. 2013;6:142–52.

    PubMed  Google Scholar 

  90. Verdecchia P, Angeli F, Achilli P, Castellani C, Broccatellia A, Gattobigio R, et al. Echocardiographic left ventricular hypertrophy in hypertension: marker for future events or mediator of events? Curr Opin Cardiol. 2007;22:329–34.

    PubMed  Google Scholar 

  91. Verdecchia P, Angeli F, Borgioni C, et al. Changes in cardiovascular risk by reduction of left ventricular mass in hypertension: a meta-analysis. Am J Hypertens. 2003;16:895–9.

    PubMed  Google Scholar 

  92. Jordan J, Yumuk V, Schlaich M, Nilsson P, Zahorska-Markiewicz B, Grassi G, et al. Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension: obesity and difficult to treat arterial hypertension. J Hypertens. 2012;30:1047–55.

    CAS  PubMed  Google Scholar 

  93. de Simone G, Devereux R, Izzo R, Girfoglio D, Lee E, Howard B, et al. Lack of reduction of left ventricular mass in treated hypertension: the Strong Heart Study. J Am Heart Assoc. 2013;2:1–8.

    Google Scholar 

  94. Verdecchia P, Angeli F. Reversal of left ventricular hypertrophy: what have recent trials taught us? Am J Cardiovasc Drugs. 2004;4:369–78.

    PubMed  Google Scholar 

  95. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    PubMed  Google Scholar 

  96. Grossman E, Verdecchia P, Shamiss A, Angeli F, Reboldi G. Diuretic treatment of hypertension. Diabetes Care. 2011;34(Suppl 2):S313–9.

    PubMed  PubMed Central  Google Scholar 

  97. Bhan V, Yan RT, Leiter LA, Fitchett DH, Langer A, Lonn E, et al. Relation between obesity and the attainment of optimal blood pressure and lipid targets in high vascular risk outpatients. Am J Cardiol. 2010;106:1270–6.

    PubMed  Google Scholar 

  98. de Simone G, Okin PM, Gerdts E, Olsen MH, Wachtell K, Hille DA, et al. Clustered metabolic abnormalities blunt regression of hypertensive left ventricular hypertrophy: the LIFE study. Nutr Metab Cardiovasc Dis. 2009;19:634–40.

    PubMed  Google Scholar 

  99. Rider OJ, Francis JM, Ali MK, Petersen SE, Robinson M, Robson MD, et al. Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity. J Am Coll Cardiol. 2009;54:718–26.

    PubMed  Google Scholar 

  100. Himeno E, Nishino K, Nakashima Y, Kuroiwa A, Ikeda M. Weight reduction regresses left ventricular mass regardless of blood pressure level in obese subjects. Am Heart J. 1996;131:313–9.

    CAS  PubMed  Google Scholar 

  101. Karason K, Wallentin I, Larsson B, Sjostrom L. Effects of obesity and weight loss on left ventricular mass and relative wall thickness: survey and intervention study. BMJ. 1997;315:912–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gerdts E, de Simone G, Lund BP, Okin PM, Wachtell K, Boman K, et al. Impact of overweight and obesity on cardiac benefit of antihypertensive treatment. Nutr Metab Cardiovasc Dis. 2013;23:122–9.

    CAS  PubMed  Google Scholar 

  103. Troy B, Pombo J, Rackley C. Measurement of left ventricular wall thickness and mass by echocardiography. Circulation. 1972;45:602–11.

    CAS  PubMed  Google Scholar 

  104. Devereux R, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 1977;55:613–8.

    CAS  PubMed  Google Scholar 

  105. Devereux R, Alonso D, Lutas E, Gottlieb G, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly funded by grant from Associazione Umbra Cuore e Ipertensione-ONLUS, Perugia, Italy.

Disclosures

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Murdolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murdolo, G., Angeli, F., Reboldi, G. et al. Left Ventricular Hypertrophy and Obesity: Only a Matter of Fat?. High Blood Press Cardiovasc Prev 22, 29–41 (2015). https://doi.org/10.1007/s40292-014-0068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-014-0068-x

Keywords

Navigation