Skip to main content
Log in

Hyperuricemia and Renal Risk

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Asymptomatic mild hyperuricemia has been reported in association with a number of conditions associated with chronic kidney disease, including hypertension, insulin resistance, cerebrovascular and cardiac disease. Experimental studies indicate that serum uric acid may directly and indirectly promote renal damage by several pathogenetic mechanisms both at cellular and tissue level. While there is currently no consensus on the usefulness of urate lowering therapy with the aim of preventing chronic renal disease, growing evidence indicates a relationship between changes of serum uric acid over time and renal morbidity. The present manuscript will briefly review the evidence in favor and against an independent role for SUA in the pathogenesis of renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;21(116):894–900.

    Article  Google Scholar 

  2. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359:1811–21 (Review).

    Google Scholar 

  3. Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, Mazzali M, Johnson RJ. Uric acid, hominoid evolution and the pathogenesis salt-sensitivity. Hypertension. 2002;40:355–60.

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez-Lozada LG, Tapia E, Avila-Casado C, Soto V, Franco M, Santamaria J, Nakagawa T, Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J. Mild hyperuricemia induces glomerular hypertension in normal rats. Am J Physiol Renal Physiol. 2002;283:F1105–10.

    PubMed  Google Scholar 

  5. Kanellis J, Watanabe S, Li JH, Kang D-H, Li P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan HY, Feng L, Johnson RJ. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41:1287–93.

    Article  CAS  PubMed  Google Scholar 

  6. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell. 1998;2:275–81.

    Article  CAS  PubMed  Google Scholar 

  7. Mahomed FA. On chronic Bright’s disease, and its essential symptoms. Lancet. 1879;1:399–401.

    Article  Google Scholar 

  8. Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63:102–10.

    Article  CAS  Google Scholar 

  9. Mazzali M, Kanbay M, Segal MS, Shafiu M, Jalal D, Feig DI, Johnson RJ. Uric acid and hypertension: cause or effect? Curr Rheumatol Rep. 2010;12:108–17 (Review).

  10. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300:924–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Soletsky B, Feig DI. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension. 2012;60:1148–56.

    Article  CAS  PubMed  Google Scholar 

  12. Choi HK, Ford ES. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med. 2007;120:442–7.

    Article  PubMed  Google Scholar 

  13. Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol. 2005;1:80–6.

    Article  CAS  PubMed  Google Scholar 

  14. Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN. Uric acid and the development of metabolic syndrome in women and men. Metabolism. 2008;57:845–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Modan M, Halkin H, Karasik A, Lusky A. Elevated serum uric acid: a facet of hyperinsulinaemia. Diabetologia. 1987;30:713–8.

    Article  CAS  PubMed  Google Scholar 

  16. Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, Okada K. Serum uric acid and the risk for hypertension and type 2 diabetes in Japanese men: the Osaka Health Survey. J Hypertens. 2001;19:1209–15.

    Article  CAS  PubMed  Google Scholar 

  17. Nan H, Dong Y, Gao W, Tuomilehto J, Qiao Q. Diabetes associated with a low serum uric acid level in a general Chinese population. Diabetes Res Clin Pract. 2007;76:68–74.

    Article  CAS  PubMed  Google Scholar 

  18. Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, Saito A, Sone H. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32:1737–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bhole V, Choi JW, Kim SW, de Vera M, Choi H. Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am J Med. 2010;123:957–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wiik BP, Larstorp AC, Høieggen A, Kjeldsen SE, Olsen MH, Ibsen H, Lindholm L, Dahlöf B, Devereux RB, Okin PM, Wachtell K. Serum uric acid is associated with new-onset diabetes in hypertensive patients with left ventricular hypertrophy: The LIFE Study. Am J Hypertens. 2010;23:845–51.

    Article  CAS  PubMed  Google Scholar 

  21. Viazzi F, Leoncini G, Vercelli M, Deferrari G, Pontremoli R. Serum uric acid levels predict new-onset type 2 diabetes in hospitalized patients with primary hypertension: the MAGIC study. Diabetes Care. 2011;34:126–8.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Sánchez-Lozada LG, Tapia E, Bautista-García P, Soto V, Avila-Casado C, Vega-Campos IP, Nakagawa T, Zhao L, Franco M, Johnson RJ. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294:F710–8.

    PubMed  Google Scholar 

  23. Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, Shafiu M, Segal M, Glassock RJ, Shimada M, Roncal C, Nakagawa T. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev. 2009;30:96–116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Curhan GC, Forman JP. Sugar-sweetened beverages and chronic disease. Kidney Int. 2010;77:569–70.

    Article  PubMed  Google Scholar 

  25. Viazzi F, Parodi D, Leoncini G, Parodi A, Falqui V, Ratto E, Vettoretti S, Bezante GP, Del Sette M, Deferrari G, Pontremoli R. Serum uric acid and target organ damage in primary hypertension. Hypertension. 2005;45:991–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ishizaka N, Ishizaka Y, Toda E, Hashimoto H, Nagai R, Yamakado M. Higher serum uric acid is associated with increased arterial stiffness in Japanese individuals. Atherosclerosis. 2007;192:131–7.

    Article  CAS  PubMed  Google Scholar 

  27. Tanemoto M, Saitoh H, Satoh F, Satoh H, Abe T, Ito S. Predictors of undiagnosed renal artery stenosis among Japanese patients with risk factors of atherosclerosis. Hypertens Res. 2005;28:237–42.

    Article  PubMed  Google Scholar 

  28. Shankar A, Klein BE, Nieto FJ, Klein R. Association between serum uric acid level and peripheral arterial disease. Atherosclerosis. 2008;196:749–55.

    Article  CAS  PubMed  Google Scholar 

  29. Cuspidi C, Valerio C, Sala C, Meani S, Esposito A, Zanchetti A, Mancia G. Lack of association between serum uric acid and organ damage in a never-treated essential hypertensive population at low prevalence of hyperuricemia. Am J Hypertens. 2007;20:678–85.

    Article  CAS  PubMed  Google Scholar 

  30. Mitsuhashi H, Yatsuya H, Matsushita K, Zhang H, Otsuka R, Muramatsu T, Takefuji S, Hotta Y, Kondo T, Murohara T, Toyoshima H, Tamakoshi K. Uric acid and left ventricular hypertrophy in Japanese men. Circ J. 2009;73:667–72.

    Article  CAS  PubMed  Google Scholar 

  31. Tarng DC, Lin HY, Shyong ML, Wang JS, Yang WC, Huang TP. Renal function in gout patients. Am J Nephrol. 1995;15:31–7.

    Article  CAS  PubMed  Google Scholar 

  32. Viazzi F, Leoncini G, Ratto E, Falqui V, Parodi A, Conti N, Derchi LE, Tomolillo C, Deferrari G, Pontremoli R. Mild hyperuricemia and subclinical renal damage in untreated primary hypertension. Am J Hypertens. 2007;20:1276–82.

    Article  CAS  PubMed  Google Scholar 

  33. Fukui M, Tanaka M, Shiraishi E, Harusato I, Hosoda H, Asano M, Kadono M, Hasegawa G, Yoshikawa T, Nakamura N. Serum uric acid is associated with microalbuminuria and subclinical atherosclerosis in men with type 2 diabetes mellitus. Metabolism. 2008;57:625–9.

    Article  CAS  PubMed  Google Scholar 

  34. Tsioufis C, Chatzis D, Vezali E, Dimitriadis K, Antoniadis D, Zervoudaki A, Lalos S, Kallikazaros I, Stefanadis C, Toutouzas P. The controversial role of serum uric acid in essential hypertension: relationships with indices of target organ damage. J Hum Hypertens. 2005;19:211–7.

    CAS  PubMed  Google Scholar 

  35. Lee JE, Kim YG, Choi YH, Huh W, Kim DJ, Oh HY. Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension. 2006;47:962–7.

    Article  CAS  PubMed  Google Scholar 

  36. Kohagura K, Kochi M, Miyagi T, Kinjyo T, Maehara Y, Nagahama K, Sakima A, Iseki K, Ohya Y. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens Res. 2013;36:43–9.

    Article  CAS  PubMed  Google Scholar 

  37. Myllymäki J, Honkanen T, Syrjänen J, Helin H, Rantala I, Pasternack A, Mustonen J. Uric acid correlates with the severity of histopathological parameters in IgA nephropathy. Nephrol Dial Transplant. 2005;20:89–95.

    Article  PubMed  Google Scholar 

  38. Sturm G, Kollerits B, Neyer U, Ritz E, Kronenberg F. Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? The Mild to Moderate Kidney Disease (MMKD) Study. Exp Gerontol. 2008;43:347–52.

    Article  CAS  PubMed  Google Scholar 

  39. Chen N, Wang W, Huang Y, Shen P, Pei D, Yu H, Shi H, Zhang Q, Xu J, Lv Y, Fan Q. Community-based study on CKD subjects and the associated risk factors. Nephrol Dial Transplant. 2009;24:2117–23.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ishani A, Grandits GA, Grimm RH, Svendsen KH, Collins AJ, Prineas RJ, Neaton JD. Association of single measurements of dipstick proteinuria, estimated glomerular filtration rate, and hematocrit with 25-year incidence of end-stage renal disease in the multiple risk factor intervention trial. J Am Soc Nephrol. 2006;17:1444–52.

    Article  CAS  PubMed  Google Scholar 

  41. Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R. Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol. 2008;19:2407–13.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS. Uric acid and incident kidney disease in the community. J Am Soc Nephrol. 2008;19:1204–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Jalal DI, Rivard CJ, Johnson RJ, Maahs DM, McFann K, Rewers M, Snell-Bergeon JK. Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the Coronary Artery Calcification in Type 1 Diabetes study. Nephrol Dial Transplant. 2010;25:1865–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Oh CM, Park SK, Ryoo JH. Serum uric acid level is associated with the development of microalbuminuria in Korean men. Eur J Clin Invest. 2014;44:4–12.

    Article  CAS  PubMed  Google Scholar 

  45. Chang HY, Lee PH, Lei CC, Tung CW, Hsu YC, Huang TJ, Lu LC, Lin CL. Hyperuricemia is an independent risk factor for new onset micro-albuminuria in a middle-aged and elderly population: a prospective cohort study in Taiwan. PLoS ONE. 2013;8:e61450.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Akalin E, Ganeshan SV, Winston J, Muntner P. Hyperuricemia is associated with the development of the composite outcomes of new cardiovascular events and chronic allograft nephropathy. Transplantation. 2008;86:652–8.

    Article  PubMed  Google Scholar 

  47. Cicero AF, Rosticci M, Parini A, Baronio C, D’Addato S, Borghi C. Serum uric acid is inversely proportional to estimated stroke volume and cardiac output in a large sample of pharmacologically untreated subjects: data from the Brisighella Heart Study. Intern Emerg Med. 2013.

  48. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51–9.

    Article  CAS  PubMed  Google Scholar 

  49. Luk AJ, Levin GP, Moore EE, Zhou XH, Kestenbaum BR, Choi HK. Allopurinol and mortality in hyperuricaemic patients. Rheumatology (Oxford). 2009;48:804–6.

    Article  CAS  Google Scholar 

  50. Kanbay M, Huddam B, Azak A, Solak Y, Kadioglu GK, Kirbas I, Duranay M, Covic A, Johnson RJ. A randomized study of allopurinol on endothelial function and estimated glomerular filtration rate in asymptomatic hyperuricemic subjects with normal renal function. Clin J Am Soc Nephrol. 2011;6:1887–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, Arroyo D, Luño J. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5:1388–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114:2508–16.

    Article  CAS  PubMed  Google Scholar 

  53. Miao Y, Ottenbros SA, Laverman GD, Brenner BM, Cooper ME, Parving HH, Grobbee DE, Shahinfar S, de Zeeuw D, Lambers Heerspink HJ. Effect of a reduction in uric acid on renal outcomes during losartan treatment: a post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan Trial. Hypertension. 2011;58:2–7.

    Article  CAS  PubMed  Google Scholar 

  54. Hamada T, Ichida K, Hosoyamada M, Mizuta E, Yanagihara K, Sonoyama K, Sugihara S, Igawa O, Hosoya T, Ohtahara A, Shigamasa C, Yamamoto Y, Ninomiya H, Hisatome I. Uricosuric action of losartan via the inhibition of urate transporter 1 (URAT 1) in hypertensive patients. Am J Hypertens. 2008;21:1157–62.

    Article  CAS  PubMed  Google Scholar 

  55. Price KL, Sautin YY, Long DA, Zhang L, Miyazaki H, Mu W, Endou H, Johnson RJ. Human vascular smooth muscle cells express a urate transporter. J Am Soc Nephrol. 2006;17:1791–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pontremoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viazzi, F., Leoncini, G., Ratto, E. et al. Hyperuricemia and Renal Risk. High Blood Press Cardiovasc Prev 21, 189–194 (2014). https://doi.org/10.1007/s40292-014-0042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-014-0042-7

Keywords

Navigation