Skip to main content
Log in

Functional and Structural Impact of ATP-Binding Cassette Transporter A1 R219K and I883M Gene Polymorphisms in Obese Children and Adolescents

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

Obesity is a serious medical condition that affects children and adolescents. ATP-binding cassette transporter A1 (ABCA1) protein is known to mediate the transport of intracellular cholesterol and phospholipids across the cell membranes. Thus, we aimed to investigate the association between ABCA1 gene polymorphisms and overweight/obesity risk, and to evaluate their relation to the lipid profile.

Materials and Methods

The study included in silico analysis of ABCA1 gene and protein. Two genetic variants in ABCA1 gene—R219K (rs2230806; G/A) and I883M (rs2066714; A/G)—were genotyped in 128 normal weight and 128 overweight/obese subjects using polymerase chain reaction–restriction fragment length polymorphism technology. Anthropometric and biochemical assessments were performed.

Results

Our findings suggest that the heterozygote GA genotype of R219K polymorphism increased susceptibility to obesity under the heterozygous model (odds ratio 2.75, 95 % CI 1.01–6.12; p = 0.014) compared with the control group. This susceptibility could be gender-specific, with higher risk among females. In addition, the A variant was associated with a higher degree of obesity (p < 0.001). On the other hand, individuals with the G variant of I883M polymorphism showed lower susceptibility to obesity under all genetic models (allelic, homozygote, heterozygote, dominant, and recessive models; p < 0.05), with no observed association with body mass index or degree of obesity. However, both single nucleotide polymorphisms (SNPs) showed significant differences in lipid levels among patients with different genotypes.

Conclusions

The study results suggest that R219K and I883M SNPs of the ABCA1 gene may play a role in susceptibility to obesity in our Egyptian population; the former increases susceptibility and phenotype severity, and the latter is protective. Larger epidemiological studies are needed for validation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta N, Goel K, Shah P, Misra A. Childhood obesity in developing countries: epidemiology, determinants, and prevention. Endocr Rev. 2012;33:48–70.

    Article  CAS  PubMed  Google Scholar 

  2. Wang H, Peng D-Q. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis. 2011;10:176–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Yin R-X, Wu D-F, Miao L, Aung LHH, Cao X-L, Yan T, et al. Several genetic polymorphisms interact with overweight/obesity to influence serum lipid levels. Cardiovasc Diabetol. 2012;11:123–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Singh AK, Singh SK, Singh N, Agrawal N, Gopal K. Obesity and dyslipidemia. Int J Biol Med Res. 2011;2:824–8.

    Google Scholar 

  5. Attie AD. ABCA1: at the nexus of cholesterol, HDL and atherosclerosis. Trends Biochem Sci. 2007;32:172–9.

    Article  CAS  PubMed  Google Scholar 

  6. Liu W, Qin L, Yu H, Lv F, Wang Y. Apolipoprotein A-I and adenosine triphosphate-binding cassette transporter A1 expression alleviates lipid accumulation in hepatocytes. J Gastroenterol Hepatol. 2014;29:614–22.

    Article  PubMed  Google Scholar 

  7. Orsó E, Broccardo C, Kaminski WE, Böttcher A, Liebisch G, Drobnik W, et al. Transport of lipids from golgi to plasma membrane is defective in tangier disease patients and Abc1-deficient mice. Nat Genet. 2000;24(2):192–6.

    Article  PubMed  Google Scholar 

  8. Tarling EJ, Thomas Q, Peter AE. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab. 2013;24:342–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Brunham LR, Singaraja RR, Duong M, Timmins JM, Fievet C, Bissada N, et al. Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:548–54.

    Article  CAS  PubMed  Google Scholar 

  10. Kitjaroentham A, Hananantachai H, Tungtrongchitr A, Pooudong S, Tungtrongchitr R. R219K polymorphism of ATP binding cassette transporter A1 related with low HDL in overweight/obese Thai males. Arch Med Res. 2007;38:834–8.

  11. Rost B, Yachdav G, Liu J. The PredictProtein server. Nucleic Acid Res. 2004;32:321–6.

    Article  Google Scholar 

  12. Marín-Martín FR, Soler-Rivas C, Martín-Hernández R, Rodriguez-Casado A. Comprehensive in silico analysis of the functional and structural impact of nonsynonymous SNPs in the ABCA1 transporter gene. Cholesterol. 2014;639751:1–19.

    Article  Google Scholar 

  13. Marchler-Bauer A, et al. (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–6.

  14. Santamarina-Fojo S, Peterson K, Knapper C, Qiu Y, Freeman L, Cheng J-F, et al. Complete genomic sequence of the human ABCA1 gene: analysis of the human and mouse ATP-binding cassette A promoter. Proc Nat Acad Sci USA. 2000;97:7987–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Singaraja RR, Brunham LR, Visscher H, Kastelein JJ, Hayden MR. Efflux and atherosclerosis: the clinical and biochemical impact of variations in the ABCA1 gene. Arterioscler Thromb Vasc Biol. 2003;23:1322–32.

    Article  CAS  PubMed  Google Scholar 

  16. Brunham LR, Singaraja RR, Hayden MR. Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr. 2006;26:105–29.

    Article  CAS  PubMed  Google Scholar 

  17. Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW. Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J Biol Chem. 2002;277:33178–87.

    Article  CAS  PubMed  Google Scholar 

  18. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjærg-Hansen A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest. 2004;114(9):1343–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Halalkhor S, Mesbah-namin SA, Daneshpour MS, Hedayati M, Azizi F. Association of ATP-binding cassette transporter-A1 polymorphism with apolipoprotein A1 level in Tehranian population. J Genet. 2011;90:129–32.

    Article  PubMed  Google Scholar 

  20. Clee SM, Zwinderman AH, Engert JC, Zwarts KY, Molhuizen HOF, Roomp K, et al. Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circulation. 2001;103:1198–205.

    Article  CAS  PubMed  Google Scholar 

  21. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Steffensen R, Tybjærg-Hansen A. Genetic variation in ABCA1 predicts ischemic heart disease in the general population. Arterioscler Thromb Vasc Biol. 2008;28:180–6.

    Article  CAS  PubMed  Google Scholar 

  22. Kolovou V, Kolovou G, Marvaki A, Karakosta A, Vasilopoulos G, Kalogiani A, et al. ATP-binding cassette transporter A1 gene polymorphisms and serum lipid levels in young Greek nurses. Lipids Health Dis. 2011;10:56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Huang J, Huang W, Li H, et al. Relationship between the I883M polymorphism of ATP-binding cassette transporter 1 gene and cardiovascular disease. Shandong Med J. 2009;9:001.

  24. Berge KE, Leren TP. Mutations in APOA-I and ABCA1 in Norwegians with low levels of HDL cholesterol. Clin Chim Acta. 2010;411:2019–23.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai MY, Ordovas JM, Li N, Straka RJ, Hanson NQ, Arends VL, et al. Effect of fenofibrate therapy and ABCA1 polymorphisms on high-density lipoprotein subclasses in the Genetics of Lipid Lowering Drugs and Diet Network. Mol Genet Metab. 2010;100:118–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sandhofer A, Iglseder B, Kaser S, Morè E, Paulweber B, Patsch JR. The influence of two variants in the adenosine triphosphate-binding cassette transporter 1 gene on plasma lipids and carotid atherosclerosis. Metabolism. 2008;57:1398–404.

    Article  CAS  PubMed  Google Scholar 

  27. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.

  28. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in boys and girls. Arch Dis Child. 1969;44(235):291–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Badawi NE, Abo Barakat A, El Sherbini SA, Fawzy HM. Prevalence of overweight and obesity in primary school children in Port Said city. Gaz Egypt Pediatr Assoc. 2013;61:31–6.

  30. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. De Giorgis T, Marcovecchio ML, Di Giovanni I, Giannini C, Chiavaroli V, Chiarelli F, et al. Triglycerides-to-HDL ratio as a new marker of endothelial dysfunction in obese prepubertal children. Eur J Endocrinol. 2013;170(2):173–80.

    Article  PubMed  Google Scholar 

  32. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Ford ES, Mokdad AH, Cook S. Recent trends in waist circumference and waist-height ratio among US children and adolescents. Pediatrics. 2006;118:e1390–8.

    Article  PubMed  Google Scholar 

  34. Abolfotouh MA, Sallam SA, Mohammed MS, Loutfy A, Hasab AA. Prevalence of elevated blood pressure and association with obesity in Egyptian school adolescents. Int J Hypertens. 2011;952537:1–8.

    Google Scholar 

  35. Rifai N, Warnick G. Measurement of lipids, lipoproteins, and apolipoproteins. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnosis. 4th ed. St. Louis, MO: Elsevier Saunders 2006;938–52.

    Google Scholar 

  36. Frieldewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    Google Scholar 

  37. Gidding SS, Dennison BA, Birch LL, Daniels SR, Gillman MW, Lichtenstein AH, et al. Dietary recommendations for children and adolescents: a guide for practitioners: consensus statement from the American Heart Association. Circulation. 2005;112(13):2061–75.

    Article  CAS  PubMed  Google Scholar 

  38. Peterson AL, McBride PE. A review of guidelines for dyslipidemia in children and adolescents. WMJ. 2012;111(6):274–81; quiz 282.

  39. Dobiásová M1, Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma [FER(HDL)]. Clin Biochem. 2001;34(7):583–8.

  40. Steinberger J, Daniels SR, Eckel RH, Hayman L, Lustig RH, McCrindle B, et al. AHA scientific statement: progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2009;119:628–47.

    Article  PubMed  Google Scholar 

  41. Hermans MP, Ahn SA, Rousseau MF. The atherogenic dyslipidemia ratio [log (TG)/HDL-C] is associated with residual vascular risk, beta-cell function loss and microangiopathy in type 2 diabetes females. Lipids Health Dis. 2012;11:132.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Elzein H, Hamadeh S. Prevalence and etiology: Middle East and North Africa (MENA) countries. In: Moreno LA, Pigeot I, Ahrens W, editors. Epidemiology of obesity in children and adolescents. NY: Springer Series on Epidemiology and Public Health; 2011. p 127–52.

  43. Saleheen D. ABCA1, ApoA-I and type II DM. Biochem Biophys Res Commun. 2005;334:971–2.

    Article  CAS  PubMed  Google Scholar 

  44. Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev. 2005;85:1343–72.

    Article  CAS  PubMed  Google Scholar 

  45. Marvaki A, Kolovou V, Katsiki N, Boutsikou M, Kotanidou A, Orfanos S, et al. Impact of 3 common ABCA1 gene polymorphisms on optimal vs non-optimal lipid profile in Greek young nurses. Open Cardiovasc Med J. 2014;8:83–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Iida A, Saito S, Sekine A, Kitamura Y, Kondo K, Mishima C, et al. High-density single-nucleotide polymorphism (SNP) map of the 150-kb region corresponding to the human ATP-binding cassette transporter A1 (ABCA1) gene. J Hum Genet. 2001;46:522–8.

    Article  CAS  PubMed  Google Scholar 

  47. Rejeb J, Omezzine A, Rebhi L, Boumaiza I, Kchock K, Radhia B, et al. Associations between common polymorphisms of adenosine triphosphate-binding cassette transporter A1 and coronary artery disease in a Tunisian population. Arch Cardiovasc Dis. 2010;103:530–7.

    Article  PubMed  Google Scholar 

  48. Yin YW, Jing-Cheng L, Gao D, Chen YX, Li BH, Wang JZ, et al. Influence of ATP-binding cassette transporter 1 R219K and M883I polymorphisms on development of atherosclerosis: a meta-analysis of 58 studies. PLoS One. 2014;9:e86480.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Manni F, Leonardi P, Barakat A, Rouba H, Heyer E, Klintschar M, et al. Y-chromosome analysis in Egypt suggests a genetic regional continuity in Northeastern Africa. Hum Biol. 2002;74:645–58.

    Article  PubMed  Google Scholar 

  50. Nakamura A, Niimura H, Kuwabara K, Takezaki T, Morita E, Wakai K, et al. Gene-gene combination effect and interactions among ABCA1, APOA1, SR-B1, and CETP polymorphisms for serum high-density lipoprotein-cholesterol in the Japanese population. PLoS One. 2013;8(12):e82046.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Xu M, Zhou H, Wang J, Li C, Yu Y. The expression of ATP-binding cassette transporter A1 in Chinese overweight and obese patients. Int J Obes. 2009;33:851–6.

    Article  CAS  Google Scholar 

  52. Brunham LR, Singaraja RR, Pape TD, Kejariwal A, Thomas PD, Hayden MR. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene. PLoS Genet. 2005;1:0739–47.

    Article  CAS  Google Scholar 

  53. Villard EF, EI Khoury P, Frisdal E, Bruckert E, Clement K, Bonnefont-Rousselot D, et al. Genetic determination of plasma cholesterol efflux capacity is gender-specific and independent of HDL-cholesterol levels. Arterioscler Thromb Vasc Bio. 2013;33:822–8.

    Article  CAS  Google Scholar 

  54. Coban N, Onat A, Kömürcü Bayrak E, Güleç C, Can G, Erginel Ünaltuna N. Gender specific association of ABCA1 gene R219K variant in coronary disease risk through interactions with serum triglyceride elevation in Turkish adults. Anadolu Kardiyol Derg. 2014;14:18–25.

    CAS  PubMed  Google Scholar 

  55. Hovingh GK, Van Wijland MJ, Brownlie A, Bisoendial RJ, Hayden MR, Kastelein JJ, et al. The role of the ABCA1 transporter and cholesterol efflux in familial hypoalphalipoproteinemia. J Lipid Res. 2003;44:1251–5.

    Article  CAS  PubMed  Google Scholar 

  56. Wellington CL, Yang YZ, Zhou S, Clee SM, Tan B, Hirano K, et al. Truncation mutations in ABCA1 suppress normal upregulation of full-length ABCA1 by 9-cis-retinoic acid and 22-R-hydroxycholesterol. J Lipid Res. 2002;43:1939–49.

    Article  CAS  PubMed  Google Scholar 

  57. Seibert TS, Allen DB, Carrel AL. Adolescent obesity and its risks: how to screen and when to refer. J Clin Outcomes Manag. 2014;21(2):87–96.

    PubMed Central  PubMed  Google Scholar 

  58. Koyuncuoğlu Güngör N. Overweight and obesity in children and adolescents. J Clin Res Pediatr Endocrinol. 2014;6(3):129–43.

  59. Li S, Chen W, Srinivasan SR, Xu J, Berenson GS. Relation of childhood obesity/cardiometabolic phenotypes to adult cardiometabolic profile: the Bogalusa Heart Study. Am J Epidemiol. 2012;176(7):S142–9.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Da Luz PL, Favarato D, Junior JRF-N, Lemos P, Chagas ACP. High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease. Clinics (Sao Paulo). 2008;63(4):427–32.

  61. Cali AMG, Caprio S. Obesity in children and adolescents. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S31–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Liu X, Xiong SL, Yi GH. ABCA1, ABCG1, and SR-BI: transit of HDL-associated sphingosine-1-phosphate. Clin Chim Acta. 2012;413:384–90.

    Article  CAS  PubMed  Google Scholar 

  63. Zargar S, Wakil S, Mobeirek AF, Al-Jafari AA. Involvement of ATP-binding cassette, subfamily A polymorphism with susceptibility to coronary artery disease. Biomed Rep. 2013;1(6):883–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Alharbi KK, Khan IA, Al-Daghri NM, Munshi A, Sharma V, Mohammed AK, et al. ABCA1 C69T gene polymorphism and risk of type 2 diabetes mellitus in a Saudi population. J Biosci. 2013;38:893–7.

    Article  CAS  PubMed  Google Scholar 

  65. Porchay I, Pean F, Belili N, Oyer B, Cogneau J, Chesnier MC, et al. For the D.E.S.I.R. Study Group. ABCA1 single nucleotide polymorphisms on high-density lipoprotein-cholesterol and overweight: the D.E.S.I.R. Study. Obesity. 2006;14:1874–9.

    Article  CAS  PubMed  Google Scholar 

  66. Wu Y, Bai H, Liu R, Liu Y, Liu BW. Analysis of ATP binding cassette A1 gene R219K polymorphism in patients with endogenous hypertriglyceridemia in Chinese population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2007;24:177–81.

    PubMed  Google Scholar 

  67. Ergen HA, Zeybek U, Gök O, Karaali ZE. Investigation of ABCA1 C69T polymorphism in patients with type 2 diabetes mellitus. Biochem Med (Zagreb). 2012;22:114–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Yamakawa-Kobayashi K, Yanagi H, Yu Y, Endo K, Arinami T, Hamaguchi H. Associations between serum high-density lipoprotein cholesterol or apolipoprotein AI levels and common genetic variants of the ABCA1 gene in Japanese school-aged children. Metabolism. 2004;53:182–6.

    Article  CAS  PubMed  Google Scholar 

  69. Li J, Wang L-F, Li Z-Q, Pan W. Effect of r219k polymorphism of the ABCA1 gene on the lipid-lowering effect of pravastatin in chinese patients with coronary heart disease. Clin Exp Pharmacol Physiol. 2009;36:567–70.

    Article  CAS  PubMed  Google Scholar 

  70. Saleheen D, Khanum S, Haider SR, Nazir A, Ahmad U, Khalid H, et al. A novel haplotype in ABCA1 gene effects plasma HDL-C concentration. Int J Cardiol. 2007;115:7–13.

    Article  PubMed  Google Scholar 

  71. Tregouet DA, Ricard S, Nicaud V, Arnould I, Soubigou S, Rosier M, et al. In-depth haplotype analysis of ABCA1 gene polymorphisms in relation to plasma ApoA1 levels and myocardial infarction. Arterioscler Thromb Vasc Biol. 2004;24:775–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mahmoud Abd El-Moaty, a specialist in a private obesity clinic, for helping with case referral for laboratory assessment and rehabilitation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manal S. Fawzy or Eman A. Toraih.

Ethics declarations

Conflicts of interest

Manal S. Fawzy, Osama Alhadramy, Mohammad H. Hussein, Hussein M. Ismail, Nesreen M. Ismail, Nouran M. Biomy, and Eman A. Toraih declare they have no conflicts of interest.

Funding

No sources of funding were used for this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3483 kb)

Supplementary material 2 (DOC 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fawzy, M.S., Alhadramy, O., Hussein, M.H. et al. Functional and Structural Impact of ATP-Binding Cassette Transporter A1 R219K and I883M Gene Polymorphisms in Obese Children and Adolescents. Mol Diagn Ther 19, 221–234 (2015). https://doi.org/10.1007/s40291-015-0150-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-015-0150-7

Keywords

Navigation