Skip to main content
Log in

Polymorphism of Organic Cation Transporter 2 Improves Glucose-Lowering Effect of Metformin via Influencing Its Pharmacokinetics in Chinese Type 2 Diabetic Patients

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background and Objectives

This study aimed to investigate how the organic cation transporter 2 nucleotide polymorphism at site 808 (G → T) affects metformin pharmacokinetics and its long-term anti-diabetic effect.

Methods

A total of 220 newly diagnosed type 2 diabetes patients taking oral metformin were recruited, genotyped and then divided into three groups by SLC22A2 genotypes (G/G, G/T, T/T). Nine patients in the GG genotype group, five patients in the GT genotype group and four patients in the TT genotype group were randomly selected for the metformin pharmacokinetic study. A randomized cohort study with 1-year follow-up was performed to clarify the metformin pharmacodynamics.

Results

After 1 year, the decrease in glycosylated hemoglobin (HbA1c) levels in subjects with the heterozygous variant genotype (GT) was significantly greater than in those with the wild-type homozygote (−2.2 % in GT vs. −1.1 % in GG, P < 0.05) after adjustment for baseline HbA1c levels, exercise and diet in each group. There were also differences in the pharmacokinetic parameters (95 % confidence interval) of metformin between these two groups [area under the concentration–time curve (AUC)0–∞ 19.7 (15.7–23.8) vs. 14.3 (11.7–16.9) μg h/L; renal clearance (CLr) 16.8 (8.5–25.0) vs. 34.1 (24.9–43.2) L/h; tubular secretion clearance (CLt) 8.1 (2.2–18.1) vs. 22.7 (15.5–29.8) L/h; all P < 0.05]. Multivariate analysis further revealed that the presence of T alleles and gender were independent influencing factors of urine excretion of metformin (P < 0.05).

Conclusion

As well as gender, the glucose-lowering efficiency of metformin can be enhanced by SLC22A2 808G > T variants through the delay of its transportation and CLr in Chinese type 2 diabetes populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med. 2002;137(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  2. Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, Ramirez AH, Roden DM, Wilke RA, McCarty CA, Davis RL, Brett CM, Giacomini KM. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther. 2013;93:186–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dresser MJ, Xiao G, Leabman MK, Gray AT, Giacomini KM. Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm Res. 2002;19(8):1244–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, Inui K. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20(5):379–86.

    Article  CAS  PubMed  Google Scholar 

  5. Christensen MM, Pedersen RS, Stage TB, Brasch-Andersen C, Nielsen F, Damkier P, Beck-Nielsen H, Brosen K. A gene–gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenetics Genomics. 2013;23(10):526–34.

    Article  CAS  PubMed  Google Scholar 

  6. Hermann LS, Schersten B, Bitzen PO, Kjellstrom T, Lindgarde F, Melander A. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care. 1994;17(10):1100–9.

    Article  CAS  PubMed  Google Scholar 

  7. Wang ZJ, Yin OQ, Tomlinson B, Chow MS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenetics Genomics. 2008;18(7):637–45.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Li S, Brown C, Leabman MK, Urban TJ, Chen L, Yee SW, Choi JH, Huang Y, Brett CM, Burchard EG, Giacomini KM. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenetics Genomics. 2009;19(7):497–504.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Leabman MK, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, DeYoung J, Taylor T, Clark AG, Herskowitz I, Giacomini KM. Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics. 2002;12(5):395–405.

    Article  CAS  PubMed  Google Scholar 

  10. Fukushima-Uesaka H, Maekawa K, Ozawa S, Komamura K, Ueno K, Shibakawa M, Kamakura S, Kitakaze M, Tomoike H, Saito Y, Sawada J. Fourteen novel single nucleotide polymorphisms in the SLC22A2 gene encoding human organic cation transporter (OCT2). Drug Metab Pharmacokinet. 2004;19(3):239–44.

    Article  CAS  PubMed  Google Scholar 

  11. Ogasawara K, Terada T, Motohashi H, Asaka J, Aoki M, Katsura T, Kamba T, Ogawa O, Inui K. Analysis of regulatory polymorphisms in organic ion transporter genes (SLC22A) in the kidney. J Hum Genet. 2008;53(7):607–14.

    Article  CAS  PubMed  Google Scholar 

  12. Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics. 2008;9(4):415–22.

    Article  CAS  PubMed  Google Scholar 

  13. Li Q, Liu F, Zheng TS, Tang JL, Lu HJ, Jia WP. SLC22A2 gene 808 G/T variant is related to plasma lactate concentration in Chinese type 2 diabetics treated with metformin. Acta Pharmacol Sin. 2010;31(2):184–90.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cheng CL, Chou CH. Determination of metformin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J Chromatogr B Biomed Sci Appl. 2001;762(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  15. Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30(5):359–71.

    Article  CAS  PubMed  Google Scholar 

  16. Cook MN, Girman CJ, Stein PP, Alexander CM. Initial monotherapy with either metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with Type 2 diabetes in UK primary care. Diabet Med. 2007;24(4):350–8.

    Article  CAS  PubMed  Google Scholar 

  17. Leabman MK, Giacomini KM. Estimating the contribution of genes and environment to variation in renal drug clearance. Pharmacogenetics. 2003;13(9):581–4.

    Article  CAS  PubMed  Google Scholar 

  18. Yin OQ, Tomlinson B, Chow MS. Variability in renal clearance of substrates for renal transporters in chinese subjects. J Clin Pharmacol. 2006;46(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  19. Yoon H, Cho HY, Yoo HD, Kim SM, Lee YB. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J. 2013;15(2):571–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH, Shin JG. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559–62.

    Article  CAS  PubMed  Google Scholar 

  21. Zolk O, Solbach TF, Konig J, Fromm MF. Functional characterization of the human organic cation transporter 2 variant p. 270Ala > Ser. Drug Metab Dispos. 2009;37(6):1312–8.

    Article  CAS  PubMed  Google Scholar 

  22. Van Leeuwen N, Nijpels G, Dekker JM, Welschen L, Thart LM. The effect of genetic variation in OCT1, OCT2 and MATE1 on metformin treatment response. Diabetes. 2011;60:A387.

    Google Scholar 

  23. Tkáč I, Klimčáková L, Javorský M, Fabianová M, Schroner Z, Hermanová H, Babjaková E, Tkáčová R. Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab. 2013;15(2):189–91.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Fund of China (Grant Nos. 81070650 and 81270397 for Fang Liu).

Conflict of interest

The authors declare that there are no conflict of interests regarding the publication of this paper.

Authors’ contributions

Wolin Hou and Dandan Zhang analyzed the data and wrote the manuscript. Fang Liu and Weiping Jia designed the study and revised the manuscript. Dandan Zhang, Yuqian Bao and Wei Lu performed the pharmacokinetic study of metformin. Qing Li and Taishan Zheng performed the genotype research, and Lili Wan contributed to metformin concentration determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, W., Zhang, D., Lu, W. et al. Polymorphism of Organic Cation Transporter 2 Improves Glucose-Lowering Effect of Metformin via Influencing Its Pharmacokinetics in Chinese Type 2 Diabetic Patients. Mol Diagn Ther 19, 25–33 (2015). https://doi.org/10.1007/s40291-014-0126-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-014-0126-z

Keywords

Navigation