Skip to main content
Log in

Association of Rho-kinase 1 (ROCK1) Gene Polymorphisms with Behçet’s Disease

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background and Objective

Behçet’s disease (BD) is a chronic inflammatory vasculitis presenting with flares and silent periods usually between 15 and 40 years of age. The aim of this study was to evaluate the possible association between Rho-kinase 1 (ROCK1) gene polymorphisms and patients with BD in a Turkish population.

Methods

A total of 192 BD patients and 255 healthy controls of similar age and sex were enrolled in this study. Polymorphisms were analyzed in genomic DNA using a BioMark HD dynamic array system.

Results

In the presence of CC genotype for rs73963110, CT genotype for rs111874856 (Val355Ile), and TC genotype for rs112130712 (Lys1054Arg) polymorphisms, the risk of BD increased 12.13-, 15.05-, and 16.28-fold, respectively (p < 0.0001). There was a lower frequency of the GA genotype of the rs112108028 (Pro1164Leu) polymorphisms in BD (10.3 %) compared with controls (39.7 %; p < 0.0001). Marked associations between these polymorphisms and the manifestations of BD were recorded.

Conclusion

This is the first study to show that ROCK1 gene polymorphisms may have a significant impact on susceptibility to BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yazici Y, Yurdakul S, Yazici H. Behçet’s syndrome. Curr Rheumatol Rep. 2010;12(6):429–35.

    Article  PubMed  Google Scholar 

  2. Haznedaroglu IC, Ozcebe OI, Ozdemir O, et al. Impaired haemostatic kinetics and endothelial function in Behçet’s disease. J Intern Med. 1996;240(4):181–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kiraz S, Ertenli I, Oztürk MA, et al. Pathological haemostasis and “prothrombotic state” in Behçet’s disease. Thromb Res. 2002;105(2):125–33.

    Article  CAS  PubMed  Google Scholar 

  4. Acikgoz N, Ermiş N, Yağmur J, et al. Elevated oxidative stress markers and its relationship with endothelial dysfunction in Behçet disease. Angiology. 2011;62(4):296–300.

    Article  CAS  PubMed  Google Scholar 

  5. International Study Group for Behçet’s Disease. Criteria for diagnosis of Behçet’s disease. Lancet. 1990;335(8697):1078–80.

    Google Scholar 

  6. Keogan MT. Clinical ımmunology review series: an approach to the patient with recurrent orogenital ulceration, including Behçet’s syndrome. Clin Exp Immunol. 2009;156(1):1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Mendoza-Pinto C, García-Carrasco M, Jiménez-Hernández M, et al. Etiopathogenesis of Behcet’s disease. Autoimmun Rev. 2010;9(4):241–5.

    Article  CAS  PubMed  Google Scholar 

  8. Ishizaki T, Maekawa M, Fujisawa K, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15(8):1885–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Matsui T, Amano M, Yamamoto T, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996;15(9):2208–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003;4(6):446–56.

    Article  CAS  PubMed  Google Scholar 

  11. Yao L, Romero MJ, Toque HA, et al. The role of RhoA/Rho kinase pathway in endothelial dysfunction. J Cardiovasc Dis Res. 2010;1(4):165–70.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Zhou Q, Gensch C, Liao JK. Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease. Trends Pharmacol Sci. 2011;32(3):167–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wojciak-Stothard B, Ridley AJ. Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol. 2002;39(4–5):187–99.

    Article  CAS  PubMed  Google Scholar 

  14. Takeda K, Ichiki T, Tokunou T, et al. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol. 2001;21(5):868–73.

    Article  CAS  PubMed  Google Scholar 

  15. Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003;93(8):767–75.

    Article  CAS  PubMed  Google Scholar 

  16. Ming XF, Viswambharan H, Barandier C, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol. 2002;22(24):8467–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mizuki N, Ota M, Yabuki K, et al. Localization of the pathogenic gene of Behçet’s disease by microsatellite analysis of three different populations. Invest Ophthalmol Vis Sci. 2000;41(12):3702–8.

    CAS  PubMed  Google Scholar 

  18. Gül A, Hajeer AH, Worthington J, et al. Evidence for linkage of the HLA-B locus in Behçet’s disease, obtained using the transmission disequilibrium test. Arthritis Rheum. 2001;44(1):239–40.

    Article  PubMed  Google Scholar 

  19. Oguz E, Alasehirli B, Pehlivan Y, et al. Association between Rho-kinase (ROCK2) gene polymorphisms and Behçet’s disease. Transl Res. 2012;160(6):428–34.

    Article  CAS  PubMed  Google Scholar 

  20. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Karasneh J, Gül A, Ollier WE, et al. Whole-genome screening for susceptibility genes in multicase families with Behçet’s disease. Arthritis Rheum. 2005;52(6):1836–42.

    Article  CAS  PubMed  Google Scholar 

  22. Fei Y, Webb R, Cobb BL, et al. Identification of novel genetic susceptibility loci for Behçet’s disease using a genome-wide association study. Arthritis Res Ther. 2009;11(3):R66.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Remmers EF, Cosan F, Kirino Y, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet. 2010;42(8):698–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ohno S, Ohguchi M, Hirose S, et al. Close association of HLA-Bw51 with Behçet’s disease. Arch Ophthalmol. 1982;100(9):1455–8.

    Article  CAS  PubMed  Google Scholar 

  25. Piga M, Mathieu A. Genetic susceptibility to Behcet’s disease: role of genes belonging to the MHC region. Rheumatology (Oxford). 2011;50(2):299–310.

    Article  CAS  PubMed  Google Scholar 

  26. Kaya Tİ. Genetics of Behçet’s disease. Patholog Res Int. 2012;2012:912589.

    PubMed Central  PubMed  Google Scholar 

  27. Palomino Doza J, Topf A, Bentham J, et al. Low-frequency intermediate penetrance variants in the ROCK1 gene predispose to Tetralogy of Fallot. BMC Genet. 2013;14:57.

    Google Scholar 

  28. Sari I, Berberoglu B, Ozkara E, et al. Role of rho-kinase gene polymorphisms and protein expressions in colorectal cancer development. Pathobiology. 2013;80(3):138–45.

    Article  CAS  PubMed  Google Scholar 

  29. Evereklioglu C. Current concepts in the etiology and treatment of Behçet disease. Surv Ophthalmol. 2005;50(4):297–350.

    Article  PubMed  Google Scholar 

  30. Bekpinar S, Kiliç N, Unlüçerçi Y, et al. Evaluation of nitrosative and oxidative stress in Behçet disease. J Eur Acad Dermatol Venereol. 2005;19(2):167–71.

    Article  CAS  PubMed  Google Scholar 

  31. Akcay YD, Sagin FG, Aksu K, et al. A panel of oxidative stress assays does not provide supplementary diagnostic information in Behcet’s disease patients. J Inflamm (Lond). 2012;9:13.

    Article  CAS  PubMed Central  Google Scholar 

  32. Onur E, Kabaroglu C, Inanir I, et al. Oxidative stress impairs endothelial nitric oxide levels in Behçet’s disease. Cutan Ocul Toxicol. 2011;30(3):217–20.

    Article  CAS  PubMed  Google Scholar 

  33. Jin L, Ying Z, Webb RC. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol. 2004;287(4):H1495–500.

    Article  CAS  PubMed  Google Scholar 

  34. Kataoka C, Egashira K, Inoue S, et al. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension. 2002;39(2):245–50.

    Article  CAS  PubMed  Google Scholar 

  35. Shah DI, Singh M. Involvement of Rho-kinase in experimental vascular endothelial dysfunction. Mol Cell Biochem. 2006;283(1–2):191–9.

    Article  CAS  PubMed  Google Scholar 

  36. Cekmen M, Evereklioglu C, Er H, et al. Vascular endothelial growth factor levels are increased and associated with disease activity in patients with Behçet’s syndrome. Int J Dermatol. 2003;42(11):870–5.

    Article  CAS  PubMed  Google Scholar 

  37. Erdem F, Gündoğdu M, Kiki I, et al. Vascular endothelial and basic fibroblast growth factor serum levels in patients with Behçet’s disease. Rheumatol Int. 2005;25(8):599–603.

    Article  CAS  PubMed  Google Scholar 

  38. Sun H, Breslin JW, Zhu J, et al. Rho and ROCK signaling in VEGF-induced microvascular endothelial hyperpermeability. Microcirculation. 2006;13(3):237–47.

    Article  CAS  PubMed  Google Scholar 

  39. van Nieuw Amerongen GP, Koolwijk P, Versteilen A, et al. Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol. 2003;23(2):211–7.

  40. Zierhut M, Abu El-Asrar AM, Bodaghi B, et al. Therapy of ocular Behçet disease. Ocul Immunol Inflamm. 2014;22(1):64–76.

  41. Dalvi SR, Yildirim R, Yazici Y. Behcet’s syndrome. Drugs. 2012;72(17):2223–41.

    Article  CAS  PubMed  Google Scholar 

  42. Rubenstein NM, Callahan JA, Lo DH, et al. Selective glucocorticoid control of Rho kinase isoforms regulate cell-cell interactions. Biochem Biophys Res Commun. 2007;354(2):603–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant (BAP TF.10.19) from the University of Gaziantep. Elif Oguz, Abdullah Tuncay Demiryürek, Yavuz Pehlivan, Bünyamin Kisacik, Esma Ozkara, Serdar Oztuzcu, Belgin Alasehirli and Ahmet Mesut Onat declare no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Tuncay Demiryürek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguz, E., Demiryürek, A.T., Pehlivan, Y. et al. Association of Rho-kinase 1 (ROCK1) Gene Polymorphisms with Behçet’s Disease. Mol Diagn Ther 18, 419–426 (2014). https://doi.org/10.1007/s40291-014-0092-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-014-0092-5

Keywords

Navigation