Skip to main content
Log in

The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research

  • Original Research Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Purpose

The main aim of this study was to examine differences in upper arm arterial occlusion pressure (AOP) between three different cuff widths and how individual characteristics influence this. Additional aims of the study were to investigate differences in AOP due to sex and race and to create regression equations that estimate AOP for each cuff width.

Methods

Two hundred and forty nine participants (males n = 102; females n = 147) visited the laboratory once for measurement of arm length, arm circumference, and resting brachial systolic (bSBP) and diastolic blood pressure (bDBP). Next, each cuff was applied to the upper arm and inflated until a Doppler probe placed at the radial artery no longer detected blood flow. The minimum inflation pressure that caused cessation of blood flow was determined to be the AOP.

Results

Differences in AOP were observed between cuff widths (p < 0.001). The 5-cm-wide cuff required the greatest inflation pressure [145 (19) mmHg], followed by the 10 cm [123 (13) mmHg], and 12-cm-wide cuff [120 (12) mmHg]. A model encompassing arm circumference, bSBP, arm length, bDBP, and sex explained the most variance in AOP for each cuff (5 cm, R 2 = 0.651; 10 cm, R 2 = 0.570; 12 cm, R 2 = 0.557). However, arm circumference explained the most unique variance for each cuff. When separated by sex, males required greater pressures. Additionally, after controlling for sex, it was found that non-Hispanic Blacks required greater pressures compared with Whites. The regression equations for each cuff width are as follows: 5 cm (mmHg) = 2.926 (arm circumference) + 1.002 (bSBP) − 0.428 (arm length) + 0.213 (bDBP) + 12.668 (sex) − 68.493; 10 cm (mmHg) = 1.545 (arm circumference) + 0.722 (bSBP) − 0.235 (arm length) + 0.205 (bDBP) + 6.378 (sex) − 15.918; 12 cm (mmHg) = 1.393 (arm circumference) + 0.710 (bSBP) − 0.294 (arm length) + 0.164 (bDBP) + 6.419 (sex) − 8.752.

Conclusions

The AOP is dependent upon cuff width, highlighting the need for authors to report cuff width and consider the impact it has on restriction. Participant characteristics, especially arm circumference, should be considered when applying this blood flow restriction pressure. Lastly, both sex and race have an impact on AOP, although it is not presently known how meaningful this difference is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406–12.

    Article  CAS  PubMed  Google Scholar 

  2. Martin-Hernandez J, Marin PJ, Menendez H, Ferrero C, Loenneke JP, Herrero AJ. Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sports. 2013;23(2):e114–20.

    Article  CAS  PubMed  Google Scholar 

  3. Vechin FC, Libardi CA, Conceicao MS, Damas FR, Lixandrao ME, Berton RP, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):1071–6.

    Article  PubMed  Google Scholar 

  4. Loenneke JP, Thiebaud RS, Abe T. Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence. Scand J Med Sci Sports. 2014;24(6):e415–22.

    Article  CAS  PubMed  Google Scholar 

  5. Loenneke JP, Wilson JM, Wilson GJ, Pujol TJ, Bemben MG. Potential safety issues with blood flow restriction training. Scand J Med Sci Sports. 2011;21(4):510–8.

    Article  CAS  PubMed  Google Scholar 

  6. Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903–12.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Crenshaw AG, Hargens AR, Gershuni DH, Rydevik B. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand. 1988;59(4):447–51.

    Article  CAS  PubMed  Google Scholar 

  8. Moore MR, Garfin SR, Hargens AR. Wide tourniquets eliminate blood flow at low inflation pressures. J Hand Surg Am. 1987;12(6):1006–11.

    Article  CAS  PubMed  Google Scholar 

  9. Loenneke JP, Allen KM, Mouser JG, Thiebaud RS, Kim D, Abe T, et al. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur J Appl Physiol. 2015;115(2):397–405.

    Article  PubMed  Google Scholar 

  10. Keenan NL, Rosendorf KA, Centers for Disease Control and Prevention. Prevalence of hypertension and controlled hypertension—United States, 2005–2008. Morb Mortal Wkly Rep Surveill Summ. 2011;60(01):94–7.

    Google Scholar 

  11. Counts BR, Dankel SJ, Barnett BE, Kim D, Mouser JG, Allen KM, et al. The influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2015. doi:10.1002/mus.24756.

    PubMed  Google Scholar 

  12. Goldfarb AH, Garten RS, Chee PD, Cho C, Reeves GV, Hollander DB, et al. Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur J Appl Physiol. 2008;104(5):813–9.

    Article  CAS  PubMed  Google Scholar 

  13. Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc. 2003;35(7):1203–8.

    Article  CAS  PubMed  Google Scholar 

  14. Graham B, Breault MJ, McEwen JA, McGraw RW. Occlusion of arterial flow in the extremities at subsystolic pressures through the use of wide tourniquet cuffs. Clin Orthop Relat Res. 1993;286:257–61.

    PubMed  Google Scholar 

  15. Younger AS, McEwen JA, Inkpen K. Wide contoured thigh cuffs and automated limb occlusion measurement allow lower tourniquet pressures. Clin Orthop Relat Res. 2004;428:286–93.

    Article  PubMed  Google Scholar 

  16. Hargens AR, McClure AG, Skyhar MJ, Lieber RL, Gershuni DH, Akeson WH. Local compression patterns beneath pneumatic tourniquets applied to arms and thighs of human cadavera. J Orthop Res. 1987;5(2):247–52.

    Article  CAS  PubMed  Google Scholar 

  17. Van Roekel HE, Thurston AJ. Tourniquet pressure: the effect of limb circumference and systolic blood pressure. J Hand Surg Br. 1985;10(2):142–4.

    Article  PubMed  Google Scholar 

  18. Widmaier EP, Raff H, Strang KT, Vander AJ. Vander’s human physiology : the mechanisms of body function. 12th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  19. Acree LS, Comp PC, Whitsett TL, Montgomery PS, Nickel KJ, Fjeldstad AS, et al. The influence of obesity on calf blood flow and vascular reactivity in older adults. Dyn Med. 2007;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kooijman M, Thijssen DH, de Groot PC, Bleeker MW, van Kuppevelt HJ, Green DJ, et al. Flow-mediated dilatation in the superficial femoral artery is nitric oxide mediated in humans. J Physiol. 2008;586(4):1137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barnett BE, Dankel SJ, Counts BR, Nooe AL, Abe T, Loenneke JP. Blood flow occlusion pressure at rest and immediately after a bout of low load exercise. Clin Physiol Funct Imaging. 2015. doi:10.1111/cpf.12246.

    PubMed  Google Scholar 

  22. Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. 2008;40(3):529–34.

    Article  PubMed  Google Scholar 

  23. Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035–9.

    Article  CAS  PubMed  Google Scholar 

  24. Brandner CR, Kidgell DJ, Warmington SA. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction. Scand J Med Sci Sports. 2014. doi:10.1111/sms.12297.

    PubMed  Google Scholar 

  25. Dorneles GP, Colato AS, Galvao SL, Ramis TR, Ribeiro JL, Romao PR, et al. Acute response of peripheral CCr5 chemoreceptor and NK cells in individuals submitted to a single session of low-intensity strength exercise with blood flow restriction. Clin Physiol Funct Imaging. 2015. doi:10.1111/cpf.12231.

    PubMed  Google Scholar 

  26. Garten RS, Goldfarb A, Crabb B, Waller J. The impact of partial vascular occlusion on oxidative stress markers during resistance exercise. Int J Sports Med. 2015;36(7):542–9.

    Article  CAS  PubMed  Google Scholar 

  27. Maior AS, Simao R, Rocha Martins MS, Freitas de Salles B, Willardson JM. Influence of blood flow restriction during low-intensity resistance exercise on the post-exercise hypotensive response. J Strength Cond Res. 2015. doi:10.1519/JSC.0000000000000930.

    PubMed  Google Scholar 

  28. Neto GR, Sousa MS, Costa PB, Salles BF, Novaes GS, Novaes JS. Hypotensive effects of resistance exercises with blood flow restriction. J Strength Cond Res. 2015;29(4):1064–70.

    Article  PubMed  Google Scholar 

  29. Thiebaud RS, Loenneke JP, Fahs CA, Kim D, Ye X, Abe T, et al. Muscle damage after low-intensity eccentric contractions with blood flow restriction. Acta Physiol Hung. 2014;101(2):150–7.

    Article  CAS  PubMed  Google Scholar 

  30. Vieira A, Gadelha AB, Ferreira-Junior JB, Vieira CA, de Melo Keene von Koenig Soares E, Cadore EL, et al. Session rating of perceived exertion following resistance exercise with blood flow restriction. Clin Physiol Funct Imaging. 2014. doi:10.1111/cpf.12128.

    Google Scholar 

  31. Yasuda T, Fukumura K, Fukuda T, Iida H, Imuta H, Sato Y, et al. Effects of low-intensity, elastic band resistance exercise combined with blood flow restriction on muscle activation. Scand J Med Sci Sports. 2014;24(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  32. Farup J, de Paoli F, Bjerg K, Riis S, Ringgard S, Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports. 2015. doi:10.1111/sms.12396.

    Google Scholar 

  33. Luebbers PE, Fry AC, Kriley LM, Butler MS. The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J Strength Cond Res. 2014;28(8):2270–80.

    Article  PubMed  Google Scholar 

  34. Lowery RP, Joy JM, Loenneke JP, de Souza EO, Machado M, Dudeck JE, et al. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin Physiol Funct Imaging. 2014;34(4):317–21.

    Article  PubMed  Google Scholar 

  35. Yasuda T, Fukumura K, Uchida Y, Koshi H, Iida H, Masamune K, et al. Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults. J Gerontol A Biol Sci Med Sci. 2015;70(8):950–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this manuscript. This study was not supported by any funding. Matthew B. Jessee, Samuel L. Buckner, Scott J. Dankel, Brittany R. Counts, Takashi Abe, and Jeremy P. Loenneke declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy P. Loenneke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jessee, M.B., Buckner, S.L., Dankel, S.J. et al. The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Med 46, 913–921 (2016). https://doi.org/10.1007/s40279-016-0473-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0473-5

Keywords

Navigation