Skip to main content

Advertisement

Log in

Use of Objective Neurocognitive Measures to Assess the Psychological States that Influence Return to Sport Following Injury

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

There is growing interest in the effects of psychological states on human performance, especially with those who have suffered debilitating injury and are attempting to return to sport (RTS). Current research methods measure psychological states through validated questionnaires; however, these outcomes only allow for subjective assessment and may be unintentionally biased. Application of objective neurocognitive measures correlated with psychological states will advance understanding of injury outcomes by identifying human behavior and avoiding vague assumptions from subjective measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim S, Bosque J, Meehan JP, et al. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J Bone Joint Surg Am. 2011;93:994–1000.

    Article  PubMed  Google Scholar 

  2. Shelbourne KD, Nitz P. Accelerated rehabilitation after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1992;15:256–64.

    Article  PubMed  CAS  Google Scholar 

  3. Ardern CL, Taylor NF, Feller JA, et al. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48:1543–52.

    Article  PubMed  Google Scholar 

  4. Ardern CL, Webster KE, Taylor NF, et al. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med. 2011;45:596–606.

    Article  PubMed  Google Scholar 

  5. Ardern CL, Taylor NF, Feller JA, et al. Return-to-sport outcomes at 2 to 7 years after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2012;40:41–8.

    Article  PubMed  Google Scholar 

  6. Zimny ML, Schutte M, Dabezies E. Mechanoreceptors in the human anterior cruciate ligament. Anat Rec. 1986;214:204–9.

    Article  PubMed  CAS  Google Scholar 

  7. te Wierike SCM, van der Sluis A, van den Akker-Scheek I, et al. Psychosocial factors influencing the recovery of athletes with anterior cruciate ligament injury: a systematic review. Scand J Med Sci Sports. 2013;23:527–40.

    Google Scholar 

  8. Lentz TA. A cross sectional study of return to pre-injury sports participation following anterior cruciate ligament reconstruction: contributions of demographic, knee impairment, and self-report measures. J Orthop Sports Phys Ther. 2012;42:893–901.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lentz TA, Zeppieri G, George SZ, et al. Comparison of physical impairment, functional, and psychosocial measures based on fear of reinjury/lack of confidence and return-to-sport status after ACL reconstruction. Am J Sports Med. 2014;43:345–53.

    Article  PubMed  Google Scholar 

  10. Walker N, Thatcher J, Lavallee D. Review: psychological responses to injury in competitive sport: a critical review. J R Soc Promot Health. 2007;127:174–80.

    Article  PubMed  Google Scholar 

  11. Ardern CL, Taylor NF, Feller JA, et al. A systematic review of the psychological factors associated with returning to sport following injury. Br J Sports Med. 2013;47:1120–6.

    Article  PubMed  Google Scholar 

  12. Hartigan EH, Lynch AD, Logerstedt DS, et al. Kinesiophobia after anterior cruciate ligament rupture and reconstruction: noncopers versus potential copers. J Orthop Sports Phys Ther. 2013;43:821–32.

    Article  PubMed  Google Scholar 

  13. Chmielewski TL, Jones D, Day T, et al. The association of pain and fear of movement/reinjury with function during anterior cruciate ligament reconstruction rehabilitation. J Orthop Sports Phys Ther. 2008;38:746–53.

    Article  PubMed  Google Scholar 

  14. Chmielewski TL, Zeppieri G, Lentz TA, et al. Longitudinal changes in psychosocial factors and their association with knee pain and function after anterior cruciate ligament reconstruction. Phys Ther. 2011;91:1355–66.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Andrish JT. Anterior cruciate ligament injuries in the skeletally immature patient. Am J Orthop. 2001;30:103–10.

    PubMed  CAS  Google Scholar 

  16. Freedman KB, Glasgow MT, Glasgow SG, et al. Anterior cruciate ligament injury and reconstruction among university students. Clin Orthop Relat Res. 1998;356:208–12.

    Article  PubMed  Google Scholar 

  17. McHorney CA, Ware JE, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31:247–63.

    Article  PubMed  CAS  Google Scholar 

  18. Smith AM. Psychological impact of injuries in athletes. Sport Med. 1996;22:391–405.

    Article  CAS  Google Scholar 

  19. Roos EM, Roos HP, Lohmander LS, et al. Knee Injury and Osteoarthritis Outcome Score (KOOS): development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28:88–96.

    Article  PubMed  CAS  Google Scholar 

  20. Sullivan MJL, Bishop SR, Pivik J. The Pain Catastrophizing Scale: development and validation. Psychol Assess. 1995;7:524–32.

    Article  Google Scholar 

  21. Webster KE, Feller JA, Lambros C. Development and preliminary validation of a scale to measure the psychological impact of returning to sport following anterior cruciate ligament reconstruction surgery. Phys Ther Sport. 2008;9:9–15.

    Article  PubMed  Google Scholar 

  22. Miller RP, Kori SH, Todd DD. The Tampa Scale: a measure of kinesophobia. Clin J Pain. 1991;7:51.

    Article  Google Scholar 

  23. George SZ, Lentz TA, Zeppieri G, et al. Analysis of shortened versions of the Tampa Scale for kinesiophobia and Pain Catastrophizing Scale for patients after anterior cruciate ligament reconstruction. Clin J Pain. 2012;28:73–80.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Park JL, Fairweather MM, Donaldson DI. Making the case for mobile cognition: EEG and sports performance. Neurosci Biobehav Rev. 2015;52:117–30.

    Article  PubMed  Google Scholar 

  25. Herman DC, Zaremski JL, Vincent HK, et al. Effect of neurocognition and concussion on musculoskeletal injury risk. Curr Sports Med Rep. 2015;14:194–9.

    Article  Google Scholar 

  26. Cona F, Zavaglia M, Astolfi L, et al. Changes in EEG power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task. Comput Intell Neurosci. 2009;2009:279515. doi:10.1155/2009/279515.

    PubMed Central  Google Scholar 

  27. Putman P, van Peer J, Maimari I, et al. EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biol Psychol. 2010;83:73–8.

    Article  PubMed  Google Scholar 

  28. Guger C, Krausz G, Allison BZ, et al. Comparison of dry and gel based electrodes for p300 brain-computer interfaces. Front Neurosci. 2012;6:60.

    PubMed Central  PubMed  Google Scholar 

  29. Estepp JR, Monnin JW, Christensen JC, et al. Evaluation of a dry electrode system for electroencephalography: applications for psychophysiological cognitive workload assessment. Proc Hum Factors Ergon Soc Annu Meet. 2010;54:210–4.

    Article  Google Scholar 

  30. Zich C, Debener S, Kranczioch C, et al. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery. Neuroimage. 2015;114:438–47.

    Article  PubMed  Google Scholar 

  31. Son I-Y, Yazici B. Near infrared imaging and spectroscopy for brain activity monitoring. In: Byrnes J, editor. Advances in sensing with security applications. Newport: Springer; 2006. p. 341–72.

    Chapter  Google Scholar 

  32. Henle C, Raab M, Cordeiro JG, et al. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed Microdevices. 2011;13:59–68.

    Article  PubMed  CAS  Google Scholar 

  33. Kyle BN, McNeil DW. Autonomic arousal and experimentally induced pain: a critical review of the literature. Pain Res Manag. 2014;19(3):159–67.

    PubMed Central  PubMed  Google Scholar 

  34. Grapperon J, Pignol A-C, Vion-Dury J. The measurement of electrodermal activity. Encephale. 2012;38:149–55.

    Article  PubMed  CAS  Google Scholar 

  35. Montskó G, Tarjányi Z, Mezősi E, et al. A validated method for measurement of serum total, serum free, and salivary cortisol, using high-performance liquid chromatography coupled with high-resolution ESI-TOF mass spectrometry. Anal Bioanal Chem. 2014;406:2333–41.

    Article  PubMed  CAS  Google Scholar 

  36. Keck ME, Welt T, Muller MB, et al. Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology. 2002;43:101–9.

    Article  PubMed  CAS  Google Scholar 

  37. Lepley AS, Gribble PA, Thomas AC, et al. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;1–12. doi:10.1111/sms.12435

  38. Marin M-F, Camprodon JA, Dougherty DD, et al. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond. Depress Anxiety. 2014;31:269–78.

    Article  PubMed  Google Scholar 

  39. Ros T, Munneke MA, Parkinson LA, et al. Neurofeedback facilitation of implicit motor learning. Biol Psychol. 2014;95:54–8.

    Article  PubMed  CAS  Google Scholar 

  40. Azarpaikan A, Torbati HT, Sohrabi M. Neurofeedback and physical balance in Parkinson’s patients. Gait Posture. 2014;40:177–81.

    Article  PubMed  Google Scholar 

  41. Walker N, Thatcher J, Lavallee D. A preliminary development of the Re-Injury Anxiety Inventory (RIAI). Phys Ther Sport. 2010;11:23–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Schilaty.

Ethics declarations

Funding

The authors acknowledge funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases: R01AR056259 for Timothy Hewett, and T32AR056950 for Nathan Schilaty.

Conflicts of interest

Nathan Schilaty, Christopher Nagelli, and Timothy Hewett declare that they have no conflicts of interest relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilaty, N.D., Nagelli, C. & Hewett, T.E. Use of Objective Neurocognitive Measures to Assess the Psychological States that Influence Return to Sport Following Injury. Sports Med 46, 299–303 (2016). https://doi.org/10.1007/s40279-015-0435-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0435-3

Keywords

Navigation