Skip to main content
Log in

Association between Physical Activity Advice Only or Structured Exercise Training with Blood Pressure Levels in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Diabetes is associated with marked cardiovascular morbidity and mortality. However, the association between different types of exercise training and blood pressure (BP) changes is not fully clear in type 2 diabetes.

Objective

The aim of this systematic review and meta-analysis of randomized controlled clinical trials (RCTs) was to determine the effects of structured exercise training (aerobic [AER], resistance [RES], or combined [COMB]) and physical activity (PA) advice only on BP changes in patients with type 2 diabetes.

Methods

Searches in five electronic databases were conducted to retrieve studies published from 1980 to 2013. Eligible studies were RCTs consisting of structured exercise training or PA advice versus no intervention in patients with type 2 diabetes. We used random effect models to derive weighted mean differences (WMDs) of exercises on absolute changes in systolic BP (SBP) and diastolic BP (DBP).

Results

A total of 30 RCTs of structured training (2,217 patients) and 21 of PA advice (7,323 patients) were included. Data were extracted independently in duplicate. Structured exercise was associated with reductions in SBP (WMD −4.22 mmHg; 95 % confidence interval [CI] −5.89 to −2.56) and DBP (WMD −2.07 mmHg; 95 % CI −3.03 to −1.11) versus controls. In structured exercise interventions, AER and RES were associated with declines in BP, and COMB was not associated with BP changes. However, in sensitivity analysis, a high-intensity protocol within COMB was associated with declines in SBP (WMD −3.30 mmHg; 95 % CI −4.71 to −1.89). Structured exercise longer than 150 min/week was associated with greater BP reductions. PA advice only was associated with reduction in SBP (WMD −2.97 mmHg; 95 % CI −4.52 to −1.43) and DBP (WMD −1.41 mmHg; 95 % CI −1.94 to −0.88) versus controls.

Conclusions

AER, RES, and high-intensity combined training are associated with BP reduction in patients with type 2 diabetes, especially in exercise programs lasting more than 150 min/week. PA advice only is also associated with lower BP levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Preis SR, Hwang SJ, Coady S, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119:1728–35.

  2. Bahia LR, Araujo DV, Schaan BD, et al. The costs of type 2 diabetes mellitus outpatient care in the Brazilian public health system. Value Health. 2011;14:S137–40.

    Article  PubMed  Google Scholar 

  3. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–44.

    Article  PubMed  CAS  Google Scholar 

  4. Stratton IM, Cull CA, Adler AI, et al. Additive effects of glycaemia and blood pressure exposure on risk of complications in type 2 diabetes: a prospective observational study (UKPDS 75). Diabetologia. 2006;49:1761–9.

    Article  PubMed  CAS  Google Scholar 

  5. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–13.

    Article  PubMed Central  Google Scholar 

  6. Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  PubMed  Google Scholar 

  7. Standards of medical care in diabetes. Diabetes Care. 2013;36:S11–66.

    Article  Google Scholar 

  8. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med. 2001;344:3–10.

    Article  PubMed  CAS  Google Scholar 

  9. Kelley GA, Kelley KS. Progressive resistance exercise and resting blood pressure : a meta-analysis of randomized controlled trials. Hypertension. 2000;35:838–43.

    Article  PubMed  CAS  Google Scholar 

  10. Whelton PK, He J, Appel LJ, et al. Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA. 2002;288:1882–8.

    Article  PubMed  Google Scholar 

  11. Cornelissen VA, Fagard RH, Coeckelberghs E, et al. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58:950–8.

    Article  PubMed  CAS  Google Scholar 

  12. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chudyk A, Petrella RJ. Effects of exercise on cardiovascular risk factors in type 2 diabetes: a meta-analysis. Diabetes Care. 2011;34:1228–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thomas D, Elliott EJ, Naughton GA, et al. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;(3):CD002968.

  15. Snowling N, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients. Diabetes Care. 2006;11:2518–27.

    Article  Google Scholar 

  16. Hayashino Y, Jackson JL, Fukumori N, et al. Effects of supervised exercise on lipid profiles and blood pressure control in people with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2012;98:349–60.

    Article  PubMed  CAS  Google Scholar 

  17. Pi-Sunyer X, Blackburn G, Brancati FL, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30:1374–83.

    Article  PubMed  Google Scholar 

  18. Robinson KA, Dickersin K. Development of a highly sensitive search strategy for the retrieval of reports of controlled trials using PubMed. Int J Epidemiol. 2002;31:150–3.

    Article  PubMed  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(264–269):W264.

    Article  Google Scholar 

  20. Higgins JPT. Analysing data and undertaking metaanalysis. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Version 5.1.0 [updated March 2011]. http://handbook.cochrane.org/ CCAa. Accessed 20 May 2013.

  21. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. American Diabetes Association. Standars of medical care in diabetes. Diabetes Care. 2014;37(Suppl 1):S14–80.

    Article  Google Scholar 

  23. Harbord RM, Higgins JPT. Meta-regression in Stata. In: Sterne JAC, Newton HJ, Cox NJ, eds. Meta-analysis in Stata. College Station (TX): Stata Press; 2009.

  24. Indrayan A. Medical biostatistics. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC; 2008.

    Google Scholar 

  25. Peters JL, Sutton AJ, Jones DR, et al. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61:991–6.

    Article  PubMed  Google Scholar 

  26. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    Article  PubMed  CAS  Google Scholar 

  28. Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  29. Bangalore S, Kumar S, Lobach I, et al. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123(2799–2810):2799.

    Article  PubMed  CAS  Google Scholar 

  30. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Kingwell BA, Berry KL, Cameron JD, et al. Arterial compliance increases after moderate-intensity cycling. Am J Physiol. 1997;273:H2186–91.

    PubMed  CAS  Google Scholar 

  32. Larose J, Sigal RJ, Boulé NG, et al. Effect of exercise training on physical fitness in type II diabetes mellitus. Med Sci Sports Exerc. 2010;8:1439–47.

    Article  Google Scholar 

  33. Earnest CP, Johannsen NM, Swift DL, et al. Aerobic and strength training in concomitant metabolic syndrome and type 2 diabetes. Med Sci Sports Exerc. 2014;46:1293–301.

  34. Rossi A, Dikareva A, Bacon SL, et al. The impact of physical activity on mortality in patients with high blood pressure: a systematic review. J Hypertens. 2012;30:1277–88.

    Article  PubMed  CAS  Google Scholar 

  35. Balducci S, Zanuso S, Nicolucci A, et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial: the Italian Diabetes and Exercise Study (IDES). Arch Intern Med. 2010;170:1794–803.

    Article  PubMed  Google Scholar 

  36. Umpierre D, Ribeiro PA, Kramer CK, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305:1790–9.

    Article  PubMed  CAS  Google Scholar 

  37. Sluik D, Buijsse B, Muckelbauer R, et al. Physical activity and mortality in individuals with diabetes mellitus: a prospective study and meta-analysis. Arch Intern Med. 2012;172:1285–95.

    Article  PubMed  Google Scholar 

  38. Umpierre D, Ribeiro PA, Schaan BD, et al. Volume of supervised exercise training impacts glycaemic control in patients with type 2 diabetes: a systematic review with meta-regression analysis. Diabetologia. 2013;56:242–51.

    Article  PubMed  CAS  Google Scholar 

  39. Colberg SR, Albright AL, Blissmer BJ, et al. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2010;42:2282–303.

    Article  PubMed  Google Scholar 

  40. Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.

    Article  PubMed  CAS  Google Scholar 

  41. Gaede P, Vedel P, Parving HH, et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999;353:617–22.

    Article  PubMed  CAS  Google Scholar 

  42. Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–57.

    Article  PubMed  Google Scholar 

  43. Arora E, Shenoy S, Sandhu JS. Effects of resistance training on metabolic profile of adults with type 2 diabetes. Indian J Med Res. 2009;129:515–9.

    PubMed  Google Scholar 

  44. Balducci S, Zanuso S, Nicolucci A, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis. 2010;20:608–17.

    Article  PubMed  CAS  Google Scholar 

  45. Belli T, Ribeiro LF, Ackermann MA, et al. Effects of 12-week overground walking training at ventilatory threshold velocity in type 2 diabetic women. Diabetes Res Clin Pract. 2011;93:337–43.

    Article  PubMed  Google Scholar 

  46. Bjørgaas M, Vik JT, Saeterhaug A, et al. Relationship between pedometer-registered activity, aerobic capacity and self-reported activity and fitness in patients with type 2 diabetes. Diabetes Obes Metab. 2005;7:737–44.

    Article  PubMed  Google Scholar 

  47. Gram B, Christensen R, Christiansen C, et al. Effects of nordic walking and exercise in type 2 diabetes mellitus: a randomized controlled trial. Clin J Sport Med. 2010;20:355–61.

    PubMed  Google Scholar 

  48. Jorge ML, de Oliveira VN, Resende NM, et al. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism. 2011;60:1244–52.

    Article  PubMed  CAS  Google Scholar 

  49. Kadoglou NP, Perrea D, Iliadis F, et al. Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care. 2007;30:719–21.

    Article  PubMed  CAS  Google Scholar 

  50. Kadoglou NP, Iliadis F, Angelopoulou N, et al. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil. 2007;14:837–43.

    Article  PubMed  Google Scholar 

  51. Kadoglou NP, Vrabas IS, Sailer N, et al. Exercise ameliorates serum MMP-9 and TIMP-2 levels in patients with type 2 diabetes. Diabetes Metab. 2010;36:144–51.

    Article  PubMed  CAS  Google Scholar 

  52. Kadoglou NP, Iliadis F, Sailer N, et al. Exercise training ameliorates the effects of rosiglitazone on traditional and novel cardiovascular risk factors in patients with type 2 diabetes mellitus. Metabolism. 2010;59:599–607.

    Article  PubMed  CAS  Google Scholar 

  53. Kadoglou NP, Vrabas IS, Kapelouzou A, et al. The impact of aerobic exercise training on novel adipokines, apelin and ghrelin, in patients with type 2 diabetes. Med Sci Monit. 2012;18:CR290–295.

  54. Kadoglou NP, Fotiadis G, Kapelouzou A, et al. The differential anti-inflammatory effects of exercise modalities and their association with early carotid atherosclerosis progression in patients with Type 2 diabetes. Diabet Med. 2013;30:e41–50.

    Article  PubMed  CAS  Google Scholar 

  55. Kurban S, Mehmetoglu I, Yerlikaya HF, et al. Effect of chronic regular exercise on serum ischemia-modified albumin levels and oxidative stress in type 2 diabetes mellitus. Endocr Res. 2011;36:116–23.

    Article  PubMed  CAS  Google Scholar 

  56. Leehey DJ, Moinuddin I, Bast JP, et al. Aerobic exercise in obese diabetic patients with chronic kidney disease: a randomized and controlled pilot study. Cardiovasc Diabetol. 2009;8:62.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Madden KM, Lockhart C, Cuff D, et al. Aerobic training-induced improvements in arterial stiffness are not sustained in older adults with multiple cardiovascular risk factors. J Hum Hypertens. 2013;27:335–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Middlebrooke AR, Elston LM, Macleod KM, et al. Six months of aerobic exercise does not improve microvascular function in type 2 diabetes mellitus. Diabetologia. 2006;49:2263–71.

    Article  PubMed  CAS  Google Scholar 

  59. Monteiro LZ, Fiani CR, Freitas MC, et al. Decrease in blood pressure, body mass index and glycemia after aerobic training in elderly women with type 2 diabetes. Arq Bras Cardiol. 2010;95:563–70.

    Article  PubMed  Google Scholar 

  60. Negri C, Bacchi E, Morgante S, et al. Supervised walking groups to increase physical activity in type 2 diabetic patients. Diabetes Care. 2010;33:2333–5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shenoy S, Guglani R, Sandhu JS. Effectiveness of an aerobic walking program using heart rate monitor and pedometer on the parameters of diabetes control in Asian Indians with type 2 diabetes. Prim Care Diabetes. 2010;4:41–5.

    Article  PubMed  Google Scholar 

  62. Sigal RJ, Kenny GP, Boule NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:357–69.

    Article  PubMed  Google Scholar 

  63. Yavari A, Hajiyev AM, Naghizadeh F. The effect of aerobic exercise on glycosylated hemoglobin values in type 2 diabetes patients. J Sports Med Phys Fitness. 2010;50:501–5.

    PubMed  CAS  Google Scholar 

  64. Castaneda C, Layne JE, Munoz-Orians L, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care. 2002;25:2335–41.

    Article  PubMed  Google Scholar 

  65. Dunstan DW, Puddey IB, Beilin LJ, et al. Effects of a short-term circuit weight training program on glycaemic control in NIDDM. Diabetes Res Clin Pract. 1998;40:53–61.

    Article  PubMed  CAS  Google Scholar 

  66. Dunstan DW, Daly RM, Owen N, et al. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care. 2002;25:1729–36.

    Article  PubMed  Google Scholar 

  67. Hameed UA, Manzar D, Raza S, et al. Resistance training leads to clinically meaningful improvements in control of glycemia and muscular strength in untrained middle-aged patients with type 2 diabetes mellitus. N Am J Med Sci. 2012;4:336–43.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kadoglou NP, Fotiadis G, Athanasiadou Z, et al. The effects of resistance training on ApoB/ApoA-I ratio, Lp(a) and inflammatory markers in patients with type 2 diabetes. Endocrine. 2012;42:561–9.

    Article  PubMed  CAS  Google Scholar 

  69. Plotnikoff RC, Eves N, Jung M, et al. Multicomponent, home-based resistance training for obese adults with type 2 diabetes: a randomized controlled trial. Int J Obes (Lond). 2010;34:1733–41.

  70. Dobrosielski DA, Gibbs BB, Ouyang P, et al. Effect of exercise on blood pressure in type 2 diabetes: a randomized controlled trial. J Gen Intern Med. 2012;27:1453–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Okada S, Hiuge A, Makino H, et al. Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J Atheroscler Thromb. 2010;17:828–33.

    Article  PubMed  CAS  Google Scholar 

  72. Agurs-Collins TD, Kumanyika SK, Ten Have TR, et al. A randomized controlled trial of weight reduction and exercise for diabetes management in older African-American subjects. Diabetes Care. 1997;20:1503–11.

    Article  PubMed  CAS  Google Scholar 

  73. Allen NA, Fain JA, Braun B, et al. Continuous glucose monitoring counseling improves physical activity behaviors of individuals with type 2 diabetes: a randomized clinical trial. Diabetes Res Clin Pract. 2008;80:371–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Andrews RC, Cooper AR, Montgomery AA, et al. Diet or diet plus physical activity versus usual care in patients with newly diagnosed type 2 diabetes: the Early ACTID randomised controlled trial. Lancet. 2011;378:129–39.

    Article  PubMed  CAS  Google Scholar 

  75. Goldhaber-Fiebert JD, Goldhaber-Fiebert SN, Tristan ML, et al. Randomized controlled community-based nutrition and exercise intervention improves glycemia and cardiovascular risk factors in type 2 diabetic patients in rural Costa Rica. Diabetes Care. 2003;26:24–9.

    Article  PubMed  Google Scholar 

  76. Hare JL, Hordern MD, Leano R, et al. Application of an exercise intervention on the evolution of diastolic dysfunction in patients with diabetes mellitus: efficacy and effectiveness. Circ Heart Fail. 2011;4:441–9.

    Article  PubMed  Google Scholar 

  77. Schultz MG, Hordern MD, Leano R, et al. Lifestyle change diminishes a hypertensive response to exercise in type 2 diabetes. Med Sci Sports Exerc. 2011;43:764–9.

    Article  PubMed  Google Scholar 

  78. Sun J, Wang Y, Chen X, et al. An integrated intervention program to control diabetes in overweight Chinese women and men with type 2 diabetes. Asia Pac J Clin Nutr. 2008;17:514–24.

    PubMed  CAS  Google Scholar 

  79. Toobert DJ, Glasgow RE, Strycker LA, et al. Biologic and quality-of-life outcomes from the Mediterranean Lifestyle Program: a randomized clinical trial. Diabetes Care. 2003;26:2288–93.

    Article  PubMed  Google Scholar 

  80. Wing RR, Epstein LH, Paternostro-Bayles M, et al. Exercise in a behavioural weight control programme for obese patients with Type 2 (non-insulin-dependent) diabetes. Diabetologia. 1988;31:902–9.

    Article  PubMed  CAS  Google Scholar 

  81. Araiza P, Hewes H, Gashetewa C, et al. Efficacy of a pedometer-based physical activity program on parameters of diabetes control in type 2 diabetes mellitus. Metabolism. 2006;55:1382–7.

    Article  PubMed  CAS  Google Scholar 

  82. Christian JG, Bessesen DH, Byers TE, et al. Clinic-based support to help overweight patients with type 2 diabetes increase physical activity and lose weight. Arch Intern Med. 2008;168:141–6.

    Article  PubMed  Google Scholar 

  83. De Greef K, Deforche B, Tudor-Locke C, et al. A cognitive-behavioural pedometer-based group intervention on physical activity and sedentary behaviour in individuals with type 2 diabetes. Health Educ Res. 2010;25:724–36.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Diedrich A, Munroe DJ, Romano M. Promoting physical activity for persons with diabetes. Diabetes Educ. 2010;36:132–40.

    Article  PubMed  Google Scholar 

  85. Ferrer-Garcia JC, Sanchez Lopez P, Pablos-Abella C, et al. Benefits of a home-based physical exercise program in elderly subjects with type 2 diabetes mellitus. Endocrinol Nutr. 2011;58(8):387–94.

  86. Kirk A, Mutrie N, MacIntyre P, et al. Increasing physical activity in people with type 2 diabetes. Diabetes Care. 2003;26:1186–92.

    Article  PubMed  Google Scholar 

  87. Krousel-Wood MA, Berger L, Jiang X, et al. Does home-based exercise improve body mass index in patients with type 2 diabetes? Results of a feasibility trial. Diabetes Res Clin Pract. 2008;79:230–6.

    Article  PubMed  CAS  Google Scholar 

  88. Piette JD, Richardson C, Himle J, et al. A randomized trial of telephonic counseling plus walking for depressed diabetes patients. Med Care. 2011;49:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Plotnikoff RC, Pickering MA, Glenn N, et al. The effects of a supplemental, theory-based physical activity counseling intervention for adults with type 2 diabetes. J Phys Act Health. 2011;8:944–54.

    PubMed  Google Scholar 

  90. Tudor-Locke C, Bell RC, Myers AM, et al. Controlled outcome evaluation of the First Step Program: a daily physical activity intervention for individuals with type II diabetes. Int J Obes Relat Metab Disord. 2004;28:113–9.

    Article  PubMed  CAS  Google Scholar 

  91. Wisse W, Rookhuizen MB, de Kruif MD, et al. Prescription of physical activity is not sufficient to change sedentary behavior and improve glycemic control in type 2 diabetes patients. Diabetes Res Clin Pract. 2010;88:e10–3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Mrs. Figueira had full access to the data and takes full responsibility for its integrity.

Conception and design: Schaan, Leitão, Umpierre. Data search: Schaan, Leitão, Umpierre, Figueira, Zucatti. Analysis and interpretation of data: Schaan, Leitão, Umpierre, Figueira, Cureau, Dalzochio. Drafting of the manuscript: Schaan, Leitão, Umpierre, Figueira, Cureau. Revising the manuscript critically for important intellectual content: Schaan, Leitão, Umpierre, Figueira, Cureau. Final approval of the manuscript submitted: Schaan, Leitão, Umpierre, Figueira, Cureau, Zucatti, Dalzochio.

Funding for this manuscript was partially provided by Fundo de Incentivo à Pesquisa do HCPA (FIPE), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, PNPD 2818/2011).

Role of funding source: the sponsor of the manuscript had no role in the design of the review and meta-analysis, data collection, data analysis, data interpretation, or writing of the report.

All authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz D. Schaan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueira, F.R., Umpierre, D., Cureau, F.V. et al. Association between Physical Activity Advice Only or Structured Exercise Training with Blood Pressure Levels in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sports Med 44, 1557–1572 (2014). https://doi.org/10.1007/s40279-014-0226-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0226-2

Keywords

Navigation