Skip to main content
Log in

Overview of Therapy and Strategies for Optimizing Outcomes in De Novo Pediatric Acute Myeloid Leukemia

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Although acute myelogenous leukemia (AML) accounts for <20 % of leukemia in children, it is responsible for over half of all pediatric leukemia deaths. Improvement in event-free survival rates, now over 50 %, are due largely to intensification of chemotherapy, aggressive supportive care, development of risk stratification based on cytogenetic and molecular markers, and improved salvage regimens. Despite this improvement over the past few decades, the survival rates have recently plateaued, and further improvement will need to take into account advances in molecular characterization of AML, development of novel agents, and better understanding of host factors influencing toxicity and response to chemotherapy. This article reviews the epidemiology and biology trends in diagnosis and treatment of pediatric acute myelogenous leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ries LA, Melbert D, Krapcho M, et al. SEER cancer statistics review 1975–2004. Bethesda: National Cancer Institute; 2007.

    Google Scholar 

  2. Ries LA, Smith MA, Gurney JG, et al. Cancer incidence and survival among children and adolescents: United States SEER program 1975–1995. NIH 1999; No. 99-4649.

  3. Cooper TM, Franklin J, Gerbing R, et al. AAML03P1, a pilot study of the safety of gemtuzumab ozogamicin in combination with chemotherapy for newly diagnosed childhood acute myeloid leukemia. Cancer. 2012;118:761–9.

    CAS  PubMed  Google Scholar 

  4. Lange BJ, Smith FO, Feusner J, et al. Outcomes in CCG-2961, a Children’s Oncology Group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. Blood. 2008;111:1044–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Gibson BE, Webb DK, Howman AJ, et al. Results of a randomized trial in children with acute myeloid leukemia. Medical Research Council AML12 trial. Br J Haematol. 2011;155:366–76.

    CAS  PubMed  Google Scholar 

  6. Creutzig U, Zimmerman M, Dworzak M, et al. Study AML-BFM 2004: improved survival in childhood acute myeloid leukemia without increased toxicity. Blood. 2010;116:181.

    Google Scholar 

  7. Rubnitz JE, Inaba H, Dahl G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukemia: results of the AML02 multicenter trial. Lancet Oncol. 2010;11:543–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Abrahamsson J, Forestier E, Heldrup J, et al. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate. J Clin Oncol. 2011;29:310–5.

    PubMed  Google Scholar 

  9. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120:3187–205.

    CAS  PubMed  Google Scholar 

  10. Liang DC, Liu HC, Yang CP, et al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2 and DNMT3A. Blood. 2013;121:2988–95.

    CAS  PubMed  Google Scholar 

  11. Rocquain J, Carbuccia N, Trouplin, et al. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer. 2010;10. doi:10.1186/1471-2407-10-401.

  12. Ishikawa Y, Kiyoi H, Tsujimura A, et al. Comprehensive analysis of cooperative gene mutations between class I and class II in de novo acute myeloid leukemia. Eur J Haematol. 2009;83:90–8.

    CAS  PubMed  Google Scholar 

  13. Wiemels JL, Xiao Z, Buffler PA, et al. In utero origin of t(8;21) AML1-ETO translocation in childhood acute myeloid leukemia. Blood. 2002;99:3801–5.

    CAS  PubMed  Google Scholar 

  14. Wiemels JL, Cazzaniga G, Dianiotti M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354:1499–503.

    CAS  PubMed  Google Scholar 

  15. Ford AM, Bennett CA, Price CM, et al. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA. 1998;95:4584–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Mori H, Colman SM, Xiao Z, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA. 2002;99:8242–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Higuchi M, O’Brien D, Kumarevelu P, et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002;1:63–74.

    CAS  PubMed  Google Scholar 

  18. Fenske TS, Pengue G, Mathews V, et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA. 2004;101:15184–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Schessl C, Rawat VP, Cusan M, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest. 2005;115:2159–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–42.

    CAS  PubMed  Google Scholar 

  21. Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2010;29:591–9.

    Google Scholar 

  22. Yoshida K, Shiba N, Shiraishi Y, et al. Whole exome sequencing reveals clonal evolution pattern and driver mutations of relapsed pediatric AML. Blood. 2013;122:1410.

    Google Scholar 

  23. Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing. Nature. 2012;481:506–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Zipursky A, Thorner P, De Harven E, et al. Myelodysplasia and acute megakaryoblastic leukemia in Down’s syndrome. Leuk Res. 1994;18:163–71.

    CAS  PubMed  Google Scholar 

  25. Taub JW, Huang X, Matherly LH, et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood. 1999;94:1393–400.

    CAS  PubMed  Google Scholar 

  26. Creutzig U, Reinhardt D, Diekamp S, et al. AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia. 2005;19:1355–60.

    CAS  PubMed  Google Scholar 

  27. Roy A, Cowan G, Vyas P, et al. The impact of trisomy 21 on early human hematopoiesis. Cell Cycle. 2013;12:533–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Seewald L, Taub JW, Maloney KW, et al. Acute leukemias in children with Down syndrome. Mol Genet Metab. 2012;107:25–30.

    CAS  PubMed  Google Scholar 

  29. Radhi M, Meschinshi S, Gamis A. Prognostic factors in pediatric acute myeloid leukemia. Curr Hematol Malig Rep. 2010;5:200–6.

    PubMed  Google Scholar 

  30. Meschinchi S, Arceci RJ. Prognostic factors and risk-based therapy in pediatric acute myeloid leukemia. Oncologist. 2007;12:341–55.

    Google Scholar 

  31. Loken MR, Alonzo TA, Pardo L, et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group. Blood. 2012;120:1581–8.

    PubMed Central  PubMed  Google Scholar 

  32. Fuesner JH, Gregory J, Moser BK, et al. Dose-intensified daunorubicin induction and consolidation plus combined modality maintenance therapy for children with newly diagnosed acute promyelocytic leukemia (APL): North American Intergroup Study C9710. J Clin Oncol. 2010;28:15S.

    Google Scholar 

  33. Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–21.

    CAS  PubMed  Google Scholar 

  34. Sorrell AD, Alonzo TA, Hilden JM, et al. Favorable survival maintained in children who have myeloid leukemia associated with Down syndrome using reduced-dose chemotherapy on Children’s Oncology Group Trial A2971. Cancer. 2012;118:4806–14.

    CAS  PubMed  Google Scholar 

  35. Taga T, Shimomura Y, Horikoshi Y, et al. Continuous and high-dose cytarabine combined chemotherapy in children with Down syndrome and acute myeloid leukemia: report from the Japanese Children’s Cancer and Leukemia Study Group (JCCLSG) AML 9805 Down Study. Pediatr Blood Cancer. 2011;57:36–40.

    PubMed  Google Scholar 

  36. Tandonnet J, Clavel J, Baruchel A, et al. Myeloid leukemia in children with Down syndrome: report of the registry-based French experience between 1990 and 2003. Pediatr Blood Cancer. 2010;54:927–33.

    PubMed  Google Scholar 

  37. Abildggaard L, Ellebaeck E, Gustafsson G, et al. Optimal treatment intensity in children with Down syndrome and myeloid leukemia: data from 56 children treated on NOPHO-AML protocols and a review of the literature. Ann Hematol. 2006;85:275–80.

    Google Scholar 

  38. O’Brien MM, Cao X, Pounds S, et al. Prognostic features in acute megakaryoblastic leukemia in children without Down syndrome: a report from the AML02 multicenter trial and the Children’s Oncology Group Study POG 9421. Leukemia. 2013;27:731–4.

    PubMed  Google Scholar 

  39. Wheatley K, Burnett AK, Goldstone AH, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Haematol. 1999;107:69–79.

    CAS  PubMed  Google Scholar 

  40. Aplenc R, Alonzo TA, Gerbing RB, et al. Ethnicity and survival in childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Blood. 2006;108:74–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Gamis AS. Acute myeloid leukemia and Down syndrome evolution and modern therapy: state of the art review. Pediatr Blood Cancer. 2005;44:13–20.

    PubMed  Google Scholar 

  42. Creutzig U, Ritter J, Ludwig WD, et al. Acute myeloid leukemia in children with Down syndrome. Klin Padiatr. 1995;207:137–44.

    Google Scholar 

  43. Ravindranath Y, Abella E, Krischer JP, et al. Acute myeloid leukemia (AML) Pediatric Oncology Group Study 8498. Blood. 1992;80:2210–4.

    CAS  PubMed  Google Scholar 

  44. Lange BJ, Gerbing RB, Feusner J, et al. Mortality in overweight and underweight children with acute myeloid leukemia. JAMA. 2005;293:203–11.

    CAS  PubMed  Google Scholar 

  45. Davies SM, Robison LL, Buckley JD, et al. Glutathione S-transferase polymorphisms in children with myeloid leukemia: a Children’s Cancer Group study. Cancer Epidemiol Biomarkers Prev. 2000;9:563–6.

    CAS  PubMed  Google Scholar 

  46. Creutzig U, Zimmerman M, Ritter J, et al. Definition of a standard-risk group in children with AML. Br J Haematol. 1999;104:630–9.

    CAS  PubMed  Google Scholar 

  47. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341:1051–62.

    CAS  PubMed  Google Scholar 

  48. Downing JR. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol. 1999;106:296–308.

    CAS  PubMed  Google Scholar 

  49. Webb DK, Wheatley K, Harrison G, et al. Outcome for children with relapsed acute myeloid leukaemia following initial therapy in the Medical Research Council (MRC) AML 10 trial. MRC Childhood Leukaemia Working Party. Leukemia. 1999;13:25–31.

    CAS  PubMed  Google Scholar 

  50. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRL AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92:2322–33.

    CAS  PubMed  Google Scholar 

  51. Fenaux P, Chevret S, Guerci A, et al. Long-term follow-up confirms the benefit of all-trans retinoic acid in acute promyelocytic leukemia. European APL Group. Leukemia. 2000;14:1371–7.

    CAS  PubMed  Google Scholar 

  52. Mandelli F, Diverio D, Avvisati G, et al. Molecular remission in PML/RARα-positive acute promyelocytic leukemia combined all-trans retinoic acid and idarubicin (IDA) therapy. Blood. 1997;90:1014–21.

    CAS  PubMed  Google Scholar 

  53. Testi AM, Biondi A, LoCoco F, et al. GIMEMA-AIEOPAIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood. 2005;106:447–53.

    CAS  PubMed  Google Scholar 

  54. Tallmann MS, Anderson JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup Protocol. Blood. 2002;100:4298–302.

    Google Scholar 

  55. Redner RL, Rush EA, Faas S, et al. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood. 1996;87:882.

    CAS  PubMed  Google Scholar 

  56. Chen SJ, Zelent A, Tong JH, et al. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest. 1993;91:2260.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Melnick A, Licht JD. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood. 1999;93:3167.

    CAS  PubMed  Google Scholar 

  58. Guidez F, Ivins S, Zhu J, et al. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood. 1998;91:2634.

    CAS  PubMed  Google Scholar 

  59. Raimondi SC, Chang MN, Ravindranath Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative Pediatric Oncology Group study—POG 8821. Blood. 1999;94:3707–16.

    CAS  PubMed  Google Scholar 

  60. Stevens RF, Hann IM, Wheatley K, et al. Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council’s 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol. 1998;101:130–40.

    CAS  PubMed  Google Scholar 

  61. Harrison C, Moorman A, Hills R, et al. Cytogenetics of childhood AML from UK Medical Research Council Treatment Trials, AML 10 and 12. Blood. 2003;102:2756–62.

    PubMed  Google Scholar 

  62. Von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 2010;28:2682–9.

    Google Scholar 

  63. Farag SS, Archer KJ, Mrozek K, et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood. 2006;108:63–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Bryd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100:4325–36.

    Google Scholar 

  65. Martinez-Climent JA, Thirman MJ, Espinoza R, et al. Detection of 11q23/MLL rearrangements in infant leukemias with fluorescence in situ hybridization and molecular analysis. Leukemia. 1995;9:1299–304.

    CAS  PubMed  Google Scholar 

  66. Casillas JN, Woods WG, Hunger SP, et al. Prognostic implications of t(10;11) translocations in childhood acute myelogenous leukemia: a report from the Children’s Cancer Group. J Pediatr Hematol Oncol. 2003;25:594–600.

    PubMed  Google Scholar 

  67. Dreyling MH, Schrader K, Fonatsch C, et al. MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood. 1998;91:4662–7.

    CAS  PubMed  Google Scholar 

  68. Balgobind BV, Raimondi SC, Harbott J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114:2489–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gore L, Ess J, Bitter MA, et al. Protean clinical manifestations in children with leukemias containing MLL-AF10 fusion. Leukemia. 2000;14:2070–5.

    CAS  PubMed  Google Scholar 

  70. Kalwinski DK, Raimondi SC, Schell MJ, et al. Prognostic importance of cytogenetic subgroups in de novo pediatric acute nonlymphocytic leukemia. J Clin Oncol. 1990;8:75–83.

    Google Scholar 

  71. Rubnitz JE, Raimondi SC, Tong X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;20:2302–9.

    CAS  PubMed  Google Scholar 

  72. O’Brien MM, Cao X, Pounds S, et al. Prognostic features in acute megakaryoblastic leukemia in children without Down syndrome: a report from the AML02 multicenter trial and the Children’s Oncology Group Study POG 9421. Leukemia. 2012. doi:10.1038/leu.2012.223.

  73. Savasan S, Buck S, Raimondi S, et al. CD36 (thrombospondin receptor) expression in childhood acute megakaryoblastic leukemia: in vitro drug sensitivity and outcome. Leuk Lymphoma. 2006;47:2076–83.

    CAS  PubMed  Google Scholar 

  74. Meshinchi S, Alonzo TA, Kopecky KJ, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;118:761–9.

    Google Scholar 

  75. Mead AJ, Linch DC, Hills RK, et al. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 2007;110:1262–70.

    CAS  PubMed  Google Scholar 

  76. Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of FLT3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97:89–94.

    CAS  PubMed  Google Scholar 

  77. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99:4326–35.

    CAS  PubMed  Google Scholar 

  78. Kottaridis PD, Gale RE, Frew ME, et al. The presence of FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98:1752–9.

    CAS  PubMed  Google Scholar 

  79. Meschinchi S, Smith FO, Arceci RJ. Prognostic factors and risk-based therapy in pediatric acute myeloid leukemia. Curr Oncol Rep. 2003;5:489–97.

    Google Scholar 

  80. Zwaan CM, Meshinchi S, Radich JP, et al. FLT3 internal tandem duplication relation to cellular drug resistance. Blood. 2003;102:2387–94.

    CAS  PubMed  Google Scholar 

  81. How J, Sykes J, Gupta V, et al. Influence of FLT3-internal tandem duplication allele burden and white blood cell count on the outcome of patients with intermediate-risk karyotype acute myeloid leukemia. Cancer. 2012;118:6110–7.

    CAS  PubMed  Google Scholar 

  82. Man CH, Fung TK, Ho C, et al. Sorafenib treatment of FLT3-ITD acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood. 2012;119:5133–43.

    CAS  PubMed  Google Scholar 

  83. Preduhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100:2717–23.

    Google Scholar 

  84. Pabst T, Mueller BU, Zhang P, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein = alpha in acute myeloid leukemia. Nat Genet. 2001;27:263–70.

    CAS  PubMed  Google Scholar 

  85. Ho PA, Alonzo TA, Gerbing RB, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2009;113:6558–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al. Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica. 2011;96:384–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Liang DC, Shih LY, Huang CF, et al. CEBPalpha mutations in childhood acute myeloid leukemia. Leukemia. 2005;19:410–4.

    CAS  PubMed  Google Scholar 

  88. Brown P, McIntyre E, Rau R, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood. 2007;110:979–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Cazzaniga G, Dell-Oro MG, Mecucci C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood. 2005;106:1419–22.

    CAS  PubMed  Google Scholar 

  90. Schnittger S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106:3733–9.

    CAS  PubMed  Google Scholar 

  91. Thiede C, Koch S, Creutzig E, et al. Mutations of the nucleophosmin gene are common in adult acute myeloid leukemia and associated with favorable prognosis if present without FLT3-ITD mutation. Blood. 2005;106:4011–20.

    Google Scholar 

  92. Meschinshi S, Stirewalt DL, Alonzo TA, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003;102:1474–9.

    Google Scholar 

  93. Farr C, Gill R, Katz F, Gibbons B, Marshall CJ. Analysis of ras gene mutations in childhood myeloid leukaemia. Br J Haematol. 1991;77:323–7.

    CAS  PubMed  Google Scholar 

  94. Goemans BF, Zwaan CM, Miller M, et al. Mutations in KIT and RAS are frequent events in the pediatric core-binding factor acute myeloid leukemia. Leukemia. 2005;19:1536–42.

    CAS  PubMed  Google Scholar 

  95. Pollard JA, Alonzo TA, Gerbing RB, et al. Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials of de novo AML. Blood. 2010;111:2372–9.

    Google Scholar 

  96. Pashka P, Marucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24:3904–11.

    Google Scholar 

  97. Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood. 1997;90:1217–25.

    CAS  PubMed  Google Scholar 

  98. Gaiger A, Schmid D, Heize G, et al. Detection of the WT1 transcript by RT-PCR in complete remission has no prognostic relevance in de novo acute myeloid leukemia. Leukemia. 1998;12:1886–94.

    CAS  PubMed  Google Scholar 

  99. Lapillonne H, Renneville A, Auvrignon A, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006;24:1507–15.

    CAS  PubMed  Google Scholar 

  100. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, et al. Clinical relevance of wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood. 2009;113:5951–60.

    CAS  PubMed  Google Scholar 

  101. Verstovsek S, Monshouri T, Smith FO, et al. Telomerase activity is prognostic in pediatric patients with acute myeloid leukemia: comparison with adult acute myeloid leukemia. Cancer. 2003;97:2212–7.

    CAS  PubMed  Google Scholar 

  102. Baldus CD, Thiede C, Soucek S, et al. BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol. 2006;24:790–7.

    CAS  PubMed  Google Scholar 

  103. Tse W, Meshinchi S, Alonzo TA, et al. Elevated expression of the AF1q gene, an MLL fusion partner, is an independent adverse prognostic factor in pediatric acute myeloid leukemia. Blood. 2004;104:3058–63.

    CAS  PubMed  Google Scholar 

  104. de Bont ES, Fidler V, Meeuwsen T, et al. Vascular endothelial growth factor secretion is an independent prognostic factor for relapse-free survival in pediatric acute myeloid leukemia patients. Clin Cancer Res. 2002;8:2856–61.

    PubMed  Google Scholar 

  105. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rate recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research trials. Blood. 2010;116:354–65.

    CAS  PubMed  Google Scholar 

  106. Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment Trials AML 10 and 12. J Clin Oncol. 2010;28:2674–81.

    PubMed  Google Scholar 

  107. Viehmann S, Teigler-Schlegel A, Bruch J, et al. Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia. 2003;17:1130–6.

    CAS  PubMed  Google Scholar 

  108. Buonamici S, Ottaviani E, Testoni N, et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood. 2002;99:443–9.

    CAS  PubMed  Google Scholar 

  109. Basecke J, Cepek L, Mannhalter C, et al. Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood. 2002;100:2267–8.

    CAS  PubMed  Google Scholar 

  110. Nucifora G, Larson RA, Rowley JD. Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood. 1993;82:712–5.

    CAS  PubMed  Google Scholar 

  111. Grimwade D, Lo Coco F. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and minimal residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia. 2002;16:1959–73.

    CAS  PubMed  Google Scholar 

  112. Inaba H, Coustan-Smith E, Cao X, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. JCO. 2012;30:3625–32.

    Google Scholar 

  113. Yin JA, O’Brien MA, Hills RK, et al. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120:2826–35.

    CAS  PubMed  Google Scholar 

  114. Schnittger S, Weisser M, Schoch C, et al. New score predicting for prognosis in PML-RARA+, AML-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood. 2003;102:2746–55.

    CAS  PubMed  Google Scholar 

  115. Weisser M, Haferlach C, Hiddemann W, Schnittger S. The quality of molecular response to chemotherapy is predictive for the outcome of AML1-ETO-positive AML and in independent of pretreatment risk factors. Leukemia. 2007;21:1177–82.

    CAS  PubMed  Google Scholar 

  116. Loken MR, Shah VO, Dattilio KL, et al. Flow cytometric analysis of human bone marrow: I. Normal erythroid development. Blood. 1987;69:255–63.

    CAS  PubMed  Google Scholar 

  117. Buckley JD, Lampkin BC, Nesbit ME, et al. Remission induction in children with acute non-lymphoblastic leukemia using cytosine arabinoside and doxorubicin or daunorubicin: a report from the Children’s Cancer Study Group. Med Pediatr Oncol. 1989;17:382–90.

    CAS  PubMed  Google Scholar 

  118. Yates J, Glidewell O, Wiernik P, et al. Cytosine arabinoside with daunorubicin or adriamycin for therapy of acute myelocytic leukemia: a CALGB study. Blood. 1982;60:454–62.

    CAS  PubMed  Google Scholar 

  119. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29:551–65.

    PubMed Central  PubMed  Google Scholar 

  120. Woods WG, Kobrinsky N, Buckley JD, et al. Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children’s Cancer Group. Blood. 1996;87:4979–89.

    CAS  PubMed  Google Scholar 

  121. Woods WG, Neudorf S, Gold S, et al. A comparison of allogeneic bone marrow transplantation, autologous transplantation and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood. 2001;97:56–62.

    CAS  PubMed  Google Scholar 

  122. Smith FO, Alonzo TA, Gerbing RB, et al. Long-term results of children with acute myeloid leukemia: a report of three consecutive phase III trials by the Children’s Cancer Group: CCG 251, CCG 213 and CCG 2891. Leukemia. 2005;19:2054–62.

    CAS  PubMed  Google Scholar 

  123. Gibson BE, Wheatley K, Hann IM, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia. 2005;19:2130–8.

    CAS  PubMed  Google Scholar 

  124. Fernandez HF, Sun Z, Yao X, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009;361:1249–59.

    CAS  PubMed  Google Scholar 

  125. Lee JH, Joo YD, Kim H, et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood. 2011;118:3832–41.

    CAS  PubMed  Google Scholar 

  126. Mulrooney DA, Yeazel MW, Kawashima T, et al. Cardiac outcomes in a cohort of adult childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.

    PubMed Central  PubMed  Google Scholar 

  127. Lipshultz SE, Scully RE, Lipsitz SR, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010;11:950–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Tukenova M, Guibout C, Oberlin O, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28:1308–15.

    PubMed  Google Scholar 

  129. Reulen RC, Winter DL, Frobisher C, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010;304:172–9.

    CAS  PubMed  Google Scholar 

  130. Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. Semin Oncol. 2004;31:5–15.

    CAS  PubMed  Google Scholar 

  131. Ewer MS, Martin FJ, Henderson C, et al. Cardiac safety of liposomal anthracyclines. Semin Oncol. 2004;31:161–81.

    CAS  PubMed  Google Scholar 

  132. Thierry AR, Vige D, Coughlin SS, et al. Modulation of doxorubicin resistance in multidrug-resistant cells by liposomes. FASEB J. 1993;7:572–9.

    CAS  PubMed  Google Scholar 

  133. Rahman A, Husain SR, Siddiqui J, et al. Liposome-mediated modulation of multidrug resistance in human HL-60 leukemia cells. J Natl Cancer Inst. 1992;84:1909–15.

    CAS  PubMed  Google Scholar 

  134. Creutzig U, Ritter J, Heyen P, et al. Effect of cranial irradiation on rate of recurrence in children with acute myeloid leukemia: initial results of the AML-BFM-87 study. The AML-BFM Study Group. Klin Padiatr. 1992;204:236–45.

    CAS  PubMed  Google Scholar 

  135. Creutzig U, Zimmermann M, Ritter J, et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia. 2005;19:2030–42.

    CAS  PubMed  Google Scholar 

  136. Bakst RL, Tallmann MS, Douer D, Yahalom J. How I treat extramedullary acute myeloid leukemia. Blood. 2011;118:3785–93.

    CAS  PubMed  Google Scholar 

  137. Tsimberidou AM, Kantarjian HM, Estey E, et al. Outcome in patients with nonleukemic granulocytic sarcoma treated with chemotherapy with or without radiotherapy. Leukemia. 2003;17:1100–3.

    PubMed  Google Scholar 

  138. Kobayashi R, Tawa A, Hanada R, et al. Extramedullary infiltration at diagnosis and prognosis in children with acute myelogenous leukemia. Pediatr Blood Cancer. 2007;48:393–8.

    PubMed  Google Scholar 

  139. Economopoulos T, Alexopoulos C, Anagnostou D, et al. Primary granulocytic sarcoma of the testis. Leukemia. 1994;8:199–200.

    CAS  PubMed  Google Scholar 

  140. Dusenberry KE, Howells WB, Arthur DC, et al. Extramedullary leukemia in children with newly diagnosed acute myeloid leukemia: a report from Children’s Cancer Group. J Pediatr Hematol Oncol. 2003;25:760–8.

    Google Scholar 

  141. Weinstein HJ, Mayer RJ, Rosenthal DS, et al. Treatment of acute myelogenous leukemia in children and adults. N Eng J Med. 1980;303:473–8.

    CAS  Google Scholar 

  142. Ritter J, Creutzig U, Schellong G. Treatment results of three consecutive German childhood AML trials: BFM-78, -83. AML-BFM-Group. Leukemia. 1992;6(Suppl 2):59–62.

    PubMed  Google Scholar 

  143. Woods WG, Ruymann FB, Lampkin BC, et al. The role of timing of high-dose cytosine arabinoside intensification and of maintenance therapy in the treatment of children with acute nonlymphocytic leukemia. Cancer. 1990;66:1106–13.

    CAS  PubMed  Google Scholar 

  144. van der Velden VHJ, van der Sluijs-Geling A, Gibson BES, et al. Clinical significance of flow cytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Blood. 2010;24:1599–606.

    Google Scholar 

  145. Niewerth D, Creutzig U, Bierings MB, et al. A review on allogeneic stem cell transplantation for newly diagnosed pediatric acute myeloid leukemia. Blood. 2010;116:2205–14.

    CAS  PubMed  Google Scholar 

  146. Burnett AK, Wheatley K, Goldstone AH, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the United Kingdom MRC AML 10 trial. Br J Haematol. 2002;11:385–400.

    Google Scholar 

  147. Creutzig U, Reinhardt D. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation? A European view. Br J Haematol. 2002;118:365–77.

    PubMed  Google Scholar 

  148. Chen AR, Alonzo TA, Woods WG, Arceci RJ. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation? An American view. Br J Haematol. 2002;118:378–84.

    PubMed  Google Scholar 

  149. Horan JT, Alonzo TA, Lyman GH, et al. Impact of disease risk on efficacy of matched related bone marrow transplantation for pediatric acute myeloid leukemia: the Children’s Oncology Group. J Clin Oncol. 2008;26:5797–801.

    PubMed Central  PubMed  Google Scholar 

  150. Capizzi RL, Poole M, Cooper MR, et al. Treatment of poor risk acute leukemia with sequential high-dose ARA-C and asparaginase. Blood. 1984;63:694–700.

    CAS  PubMed  Google Scholar 

  151. Burnett AK, Russell NH, Hills RK, et al. Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML 15 trial. J Clin Oncol. 2013;31:3360–8. doi:10.1200/JCO.2012.47.4874.

    CAS  PubMed  Google Scholar 

  152. Lowenberg B, Pabst T, Vellenga E, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364:1027–36.

    PubMed  Google Scholar 

  153. Hughes WT, Armstrong D, Bodey GP, et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis. 2002;34:730–51.

    PubMed  Google Scholar 

  154. Gamis AS, Howells WB, DeSwarte-Wallace J, et al. Alpha hemolytic streptococcal infection during intensive treatment for acute myeloid leukemia: a report from the Children’s Cancer Group study CCG-2891. J Clin Oncol. 2000;18:1845–55.

    CAS  PubMed  Google Scholar 

  155. Bow EJ, Laverdiere M, Lussier N, et al. Antifungal prophylaxis for severely neutropenic chemotherapy recipients: a meta analysis of randomized-controlled clinical trials. Cancer. 2002;94:3230–46.

    CAS  PubMed  Google Scholar 

  156. Ravindranath Y. Recent advances in pediatric acute lymphoblastic and myeloid leukemia. Curr Opin Oncol. 2003;15:23–35.

    CAS  PubMed  Google Scholar 

  157. Ghanem H, Kantarian H, Ohanian M, et al. The role of clofarabine in acute myeloid leukemia. Leuk Lymphoma. 2013;54:688–98.

    CAS  PubMed  Google Scholar 

  158. Scappini B, Gianfaldoni G, Caracciolo F, et al. Cytarabine and clofarabine after high-dose cytarabine in relapsed or refractory AML patients. Am J Hematol. 2012;87:1047–51.

    CAS  PubMed  Google Scholar 

  159. Jeha S, Gaynon PS, Razzouk BI, et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol. 2006;24:1917–23.

    CAS  PubMed  Google Scholar 

  160. Jeha S, Gandhi V, Chan KW, et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood. 2004;103:784–9.

    CAS  PubMed  Google Scholar 

  161. Hijiya N, Gaynon R, Barry E, et al. A multi-center phase I study of clofarabine, etoposide and cyclophosphamide in combination in pediatric patients with refractory or relapsed acute leukemia. Leukemia. 2009;23:2259–64.

    CAS  PubMed  Google Scholar 

  162. Inaba H, Bhojwani D, Pauley JL, et al. Combination chemotherapy with clofarabine, cyclophosphamide, and etoposide in children with refractory or relapsed hematological malignancies. Br J Haematol. 2012;156:275–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Abd Elmoneim A, Gore L, Ricklis RM, et al. Phase I dose-escalation trial of clofarabine followed by escalating doses of fractionated cyclophosphamide in children with relapsed or refractory acute leukemia. Pediatr Blood Cancer. 2012;59:1252–8.

    PubMed  Google Scholar 

  164. Brashem-Stein C, Flowers DA, Smith FO, et al. Ontogeny of hematopoietic stem cell development: reciprocal expression of CD33 and a novel molecule by maturing myeloid and erythroid progenitors. Blood. 1993;82:792–9.

    CAS  PubMed  Google Scholar 

  165. Pollard JE, Alonzo TA, Loken M, et al. Correlation of CD33 expression level with disease characteristics and response to gemtuzumab ozogamicin containing chemotherapy in childhood AML. Blood. 2012;119:3705–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–52.

    CAS  PubMed  Google Scholar 

  167. Arceci RJ, Sande J, Lange B, et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood. 2005;106:1183–8.

    CAS  PubMed  Google Scholar 

  168. Gamis, AS. Remission rates in childhood acute myeloid leukemia utilizing a dose-intensive induction regimen with or without gemtuzumab ozogamicin: initial results from the COG phase 3 trial, AAML0531. Orlando, FL. 52nd Annual ASH Meeting; 2010.

  169. Petersdorf S, Kopecky K, Stuart RK, et al. Preliminary results of Southwest Oncology Group Study S0106: an international intergroup phase 3 randomized trial comparing the addition of gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia. Blood. 2009;114:326.

    Google Scholar 

  170. Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML 15 trial. J Clin Oncol. 2010;29:369–77.

    PubMed  Google Scholar 

  171. Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukemia (ALFA-0701): a randomized, open-label, phase 3 study. Lancet. 2012;379:1508–16.

    CAS  PubMed  Google Scholar 

  172. Meshinchi S, Appelbaum FR. Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res. 2009;15:4263–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Gamis AS, Aplenc R, Alonzo TA, et al. Gemtuzumab ozogamicin in children with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk—results from the randomized phase III Children’s Oncology Group trial, AAML0531. ASH 2013, New Orleans. Session 615, oral presentation #355.

  174. Zhang W, Konopleva M, Shi Y, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100:184–98.

    CAS  PubMed  Google Scholar 

  175. Zarrinkar PP, Gunawardane RN, Cramer MD, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114:2984–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Ravandi F, Cortes JE, Jones D, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. JCO. 2010;28:1856–62.

    CAS  Google Scholar 

  177. Levis M, Ravandi F, Wang ES, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2001;117:3294–301.

    Google Scholar 

  178. Levis M, Pham R, Smith BD, et al. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004;104:1145–50.

    CAS  PubMed  Google Scholar 

  179. Inaba H, Rubnitz JE, Coustan-Smith E, et al. Phase I pharmacokinetic and pharmacodynamics study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol. 2011;29:3293–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Metzelder S, Shroeder T, Finck A, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia (AML) synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26:2353–9.

    CAS  PubMed  Google Scholar 

  181. Galm O, Herman JG, Baylin SB. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev. 2006;20:1–13.

    CAS  PubMed  Google Scholar 

  182. Baylin SB. Mechanisms underlying epigenetically mediated gene silencing in cancer. Semin Cancer Biol. 2002;12:331–7.

    CAS  PubMed  Google Scholar 

  183. Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013;121:3563–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Garcia-Manero G, Kantarijian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood. 2006;108:3271–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Garcia-Manero G, Tambara FP, Bekele NB, et al. Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol. 2012;30:2204–10.

    CAS  PubMed  Google Scholar 

  186. de Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome. Cancer. 2011;116:5420–31.

    Google Scholar 

  187. Daigle SR, Olhava EJ, Therkelsen CA, et al. Potent inhibition of DOT1L as treatment for MLL-fusion leukemia. Blood. 2013. doi:10.1182/blood-2013-04-497644.

  188. Yao Y, Chen P, Diao J, et al. Selective inhibitors of histone methyltransferase DOT1L: design, synthesis, and crystallographic studies. J Am Chem Soc. 2012;134:17834.

    CAS  Google Scholar 

  189. Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.

    CAS  PubMed  Google Scholar 

  190. Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA. 2002;99:16220–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Chen Y, Borthakur G. Lenalidomide as a novel treatment of acute myeloid leukemia. Expert Opin Investig Drugs. 2013;22:389–97.

    CAS  PubMed  Google Scholar 

  192. Li S, Fu J, Ma H, et al. Lenalidomide-induced upregulation of CXCR4 in CD34+ hematopoietic cells, a potential mechanism of decreased hematopoietic progenitor mobilization. Leukemia. 2013;27:1407–11.

    CAS  PubMed  Google Scholar 

  193. Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide, and pomalidomide in multiple myeloma. Leuk Lymphoma. 2013;54:683–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Ades L, Fenaux P. Immunomodulating drugs in myelodysplastic syndromes. Hematol Am Soc Hematol Educ Program. 2011;10:556–60.

    Google Scholar 

  195. Hickey CJ, Schwind S, Radomska HS, et al. Lenalidomide-mediated enhanced translation of C/EBPα-p30 protein up-regulates expression of the antileukemic microRNA-181a in acute myeloid leukemia. Blood. 2013;121:159–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26:2326–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Zhu YX, Braggio E, Chang-Xin S, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118:4771–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Blum W, Klisovic RB, Becker H, et al. Dose escalation of lenalidomide in relapsed or refractory acute leukemias. J Clin Oncol. 2010;28:4919–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Berg SL, Cairo MS, Russell H, et al. Safety, pharmacokinetics and immunomodulatory effects of lenalidomide in children and adolescents with relapsed/refractory solid tumors or myelodysplastic syndromes: a Children’s Oncology Group Phase I Consortium report. J Clin Oncol. 2011;29:316–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Leung W, Ching-Hon P, Coustan-Smith E, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2011;120:468–72.

    Google Scholar 

  201. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100.

    CAS  PubMed  Google Scholar 

  202. Hughes MD, Zeng R, Miller KL, et al. Augmentation of sensitivity of FLT3/ITD assay allows detection of minimal residual disease in stem cell transplant recipients—correlation with flow cytometric MRD assessment. Blood. 2010;116:1717.

    Google Scholar 

  203. Tobal K, Newton J, Macheta M, et al. Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8;21) can identify patients in durable remission and predict clinical relapse. Blood. 2000;95:815–9.

    CAS  PubMed  Google Scholar 

  204. Meschinchi S, Reis RE, Farrar J, et al. Demonstration of significant clonal evolution from diagnosis to relapse in childhood AML determined by exome capture sequencing—an NCI/COG TARGET AML study. Cancer Res. 2012;72:LB-93.

    Google Scholar 

Download references

Acknowledgments

Drs. Faulk, Gore, and Cooper have no conflicts of interest to declare. No sources of funding were used in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulk, K., Gore, L. & Cooper, T. Overview of Therapy and Strategies for Optimizing Outcomes in De Novo Pediatric Acute Myeloid Leukemia. Pediatr Drugs 16, 213–227 (2014). https://doi.org/10.1007/s40272-014-0067-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-014-0067-3

Keywords

Navigation