Skip to main content
Log in

Newer Treatments in the Management of Pediatric Asthma

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Asthma control remains a significant challenge in the pediatric age range in which ongoing loss of lung function in children with persistent asthma has been reported, despite the use of regular preventer therapy. This has important implications for observed mortality and morbidity during adulthood. Over the past decade, there has been an emergence of other treatment adjuncts, such as anti-Immunoglobulin E (IgE)-directed therapy, low dose theophylline, and the use of macrolide antibiotics, yet their exact role in asthma management remains unclear, despite omalizumab now being incorporated into several international asthma guidelines. As with many aspects of pediatric care, this is driven by a lack of appropriately designed pediatric trials. Extrapolation of data reported in adult studies may be appropriate for adolescent asthma, but is not for younger age groups, in which important pathophysiological differences exist. Novel drugs under development offer potential for benefit in the future, but to date existing data are in most cases limited to adults. Pediatric asthma also offers unique potential to prevent or modify the underlying pathophysiology. Although attempts to do so have been unsuccessful to date, advances may yet come from this approach, as our understanding about the interaction between genetics, environmental factors, and viral illness improve. This review provides an overview of the newer treatment options available for management of pediatric asthma and discusses the merits of other novel therapies in development, as we search to optimize management and improve future outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Haselkorn T, Fish JE, Zeiger RS, Szefler SJ, Miller DP, Chipps BE, et al. Consistently very poorly controlled asthma, as defined by the impairment domain of the Expert Panel Report 3 guidelines, increases risk for future severe asthma exacerbations in The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. J Allergy Clin Immunol. 2009;124(5):895–902.e1–4.

    Google Scholar 

  2. Fitzpatrick AM, Teague WG. Progressive airflow limitation is a feature of children with severe asthma. J Allergy Clin Immunol. 2011;127(1):282–4.

    Article  PubMed  Google Scholar 

  3. Covar RA, Spahn JD, Murphy JR, Szefler SJ. Progression of asthma measured by lung function in the childhood asthma management program. Am J Respir Crit Care Med. 2004;170(3):234–41.

    Article  PubMed  Google Scholar 

  4. Strunk RC, Weiss ST, Yates KP, Tonascia J, Zeiger RS, Szefler SJ. Mild to moderate asthma affects lung growth in children and adolescents. J Allergy Clin Immunol. 2006;118(5):1040–7.

    Article  PubMed  Google Scholar 

  5. Narayanan M, Owers-Bradley J, Beardsmore CS, Mada M, Ball I, Garipov R, et al. Alveolarization continues during childhood and adolescence: new evidence from helium-3 magnetic resonance. Am J Respir Crit Care Med. 2012;185(2):186–91.

    Article  PubMed  CAS  Google Scholar 

  6. Moore WC, Bleecker ER, Curran-Everett D, Erzurum SC, Ameredes BT, Bacharier L, et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clinical Immunol. 2007;119(2):405–13.

    Article  Google Scholar 

  7. Barnes PJ. New therapies for asthma: is there any progress? Trends Pharmacol Sci. 2010;31(7):335–43.

    Article  PubMed  CAS  Google Scholar 

  8. Barnes PJ. Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol. 2012;129(1):48–59.

    Article  PubMed  CAS  Google Scholar 

  9. Bush A, Pedersen S, Hedlin G, Baraldi E, Barbato A, de Benedictis F, et al. Pharmacological treatment of severe, therapy-resistant asthma in children: what can we learn from where? Eur Respir J Official J Eur Soc Clin Respir Physiol. 2011;38(4):947–58.

    Google Scholar 

  10. Sly PD, Jones CM. New and future developments of therapy for asthma in children. Eur Respir Monogr. 2012;56:224–34.

    Article  CAS  Google Scholar 

  11. Szefler SJ. Advances in pediatric asthma in 2010: addressing the major issues. J Allergy Clin Immunol. 2011;127(1):102–15.

    Article  PubMed  Google Scholar 

  12. Papadopoulos NG, Arakawa H, Carlsen KH, Custovic A, Gern J, Lemanske R, et al. International consensus on (ICON) pediatric asthma. Allergy. 2012;67(8):976–97.

    Article  PubMed  CAS  Google Scholar 

  13. Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332(3):133–8.

    Article  PubMed  CAS  Google Scholar 

  14. Marks GB, Mihrshahi S, Kemp AS, Tovey ER, Webb K, Almqvist C, et al. Prevention of asthma during the first 5 years of life: a randomized controlled trial. J Allergy Clin Immunol. 2006;118(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  15. Toelle BG, Ng KK, Crisafulli D, Belousova EG, Almqvist C, Webb K, et al. Eight-year outcomes of the Childhood Asthma Prevention Study. J Allergy Clin Immunol. 2010;126(2):388–9.

    Article  PubMed  Google Scholar 

  16. Guilbert TW, Morgan WJ, Zeiger RS, Mauger DT, Boehmer SJ, Szefler SJ, et al. Long-term inhaled corticosteroids in preschool children at high risk for asthma. N Engl J Med. 2006;354(19):1985–97.

    Article  PubMed  CAS  Google Scholar 

  17. Just J, Gouvis-Echraghi R, Rouve S, Wanin S, Moreau D, Annesi-Maesano I. Two novel, severe asthma phenotypes identified during childhood using a clustering approach. Eur Respir J Official J Eur Soc Clin Respir Physiol. 2012;40(1):55–60.

    Article  Google Scholar 

  18. Kraft M, Djukanovic R, Wilson S, Holgate ST, Martin RJ. Alveolar tissue inflammation in asthma. Am J Respir Crit Care Med. 1996;154(5):1505–10.

    Article  PubMed  CAS  Google Scholar 

  19. Hamid Q, Song Y, Kotsimbos TC, Minshall E, Bai TR, Hegele RG, et al. Inflammation of small airways in asthma. J Allergy Clin Immunol. 1997;100(1):44–51.

    Article  PubMed  CAS  Google Scholar 

  20. Berry M, Hargadon B, Morgan A, Shelley M, Richter J, Shaw D, et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J. 2005;25(6):986–91.

    Article  PubMed  CAS  Google Scholar 

  21. Verbanck S, Schuermans D, Paiva M, Vincken W. The functional benefit of anti-inflammatory aerosols in the lung periphery. J Allergy Clin Immunol. 2006;118(2):340–6.

    Article  PubMed  CAS  Google Scholar 

  22. Macleod KA, Horsley AR, Bell NJ, Greening AP, Innes JA, Cunningham S. Ventilation heterogeneity in children with well controlled asthma with normal spirometry indicates residual airways disease. Thorax. 2009;64(1):33–7.

    Article  PubMed  CAS  Google Scholar 

  23. Sonnappa S, Bastardo CM, Wade A, Saglani S, McKenzie SA, Bush A, et al. Symptom-pattern phenotype and pulmonary function in preschool wheezers. J Allergy Clin Immunol. 2010;126(3):519–26.

    Article  PubMed  Google Scholar 

  24. Bousquet J, Cabrera P, Berkman N, Buhl R, Holgate S, Wenzel S, et al. The effect of treatment with omalizumab, an anti-IgE antibody, on asthma exacerbations and emergency medical visits in patients with severe persistent asthma. Allergy. 2005;60(3):302–8.

    Article  PubMed  CAS  Google Scholar 

  25. Holgate ST, Chuchalin AG, Hebert J, Lotvall J, Persson GB, Chung KF, et al. Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin Exp Allergy. 2004;34(4):632–8.

    Article  PubMed  CAS  Google Scholar 

  26. Thoracic Society of Australia and New Zealand. Omalizumab: Recommendations for use in the Australasian context. 2009. http://www.thoracic.org.au.

  27. Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Annals Intern Med. 2011;154(9):573–82.

    Article  Google Scholar 

  28. Rodrigo GJ, Neffen H, Castro-Rodriguez JA. Efficacy and safety of subcutaneous omalizumab vs placebo as add-on therapy to corticosteroids for children and adults with asthma: a systematic review. Chest. 2011;139(1):28–35.

    Article  PubMed  CAS  Google Scholar 

  29. Milgrom H, Berger W, Nayak A, Gupta N, Pollard S, McAlary M, et al. Treatment of childhood asthma with anti-immunoglobulin E antibody (omalizumab). Pediatrics. 2001;108(2):E36.

    Article  PubMed  CAS  Google Scholar 

  30. Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. New Engl J Med. 2011;364(11):1005–15.

    Article  PubMed  CAS  Google Scholar 

  31. Kulus M, Hebert J, Garcia E, Fowler Taylor A, Fernandez Vidaurre C, Blogg M. Omalizumab in children with inadequately controlled severe allergic (IgE-mediated) asthma. Curr Med Res Opin. 2010;26(6):1285–93.

    Google Scholar 

  32. Lemanske RF Jr, Nayak A, McAlary M, Everhard F, Fowler-Taylor A, Gupta N. Omalizumab improves asthma-related quality of life in children with allergic asthma. Pediatrics. 2002;110(5):e55.

    Article  PubMed  Google Scholar 

  33. Brodlie M, McKean MC, Moss S, Spencer DA. The oral corticosteroid-sparing effect of omalizumab in children with severe asthma. Arch Dis Child. 2012;97(7):604–9.

    Article  PubMed  Google Scholar 

  34. Pavord ID, Bush A. Anti-IgE for asthma in inner-city children. New Engl J Med. 2011;364(26):2556–7 (author reply 7–8).

    Google Scholar 

  35. Berger W, Gupta N, McAlary M, Fowler-Taylor A. Evaluation of long-term safety of the anti-IgE antibody, omalizumab, in children with allergic asthma. Ann Allergy Asthma Immunol. 2003;91(2):182–8.

    Article  PubMed  CAS  Google Scholar 

  36. Limb SL, Starke PR, Lee CE, Chowdhury BA. Delayed onset and protracted progression of anaphylaxis after omalizumab administration in patients with asthma. J Allergy Clin Immunol. 2007;120(6):1378–81.

    Article  PubMed  CAS  Google Scholar 

  37. Takhar P, Corrigan CJ, Smurthwaite L, O’Connor BJ, Durham SR, Lee TH, et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol. 2007;119(1):213–8.

    Article  PubMed  CAS  Google Scholar 

  38. Burch J, Griffin S, McKenna C, Walker S, Paton J, Wright K, et al. Omalizumab for the treatment of severe persistent allergic asthma in children aged 6–11 years: a NICE single technology appraisal. Pharmacoeconomics. 2012;30(11):991–1104.

    Google Scholar 

  39. Oba Y, Salzman GA. Cost-effectiveness analysis of omalizumab in adults and adolescents with moderate-to-severe allergic asthma. J Allergy Clin Immunol. 2004;114(2):265–9.

    Article  PubMed  Google Scholar 

  40. Bush A, Pavord I. Omalizumab: NICE to USE you, to LOSE you NICE. Thorax. 2013;68:5–6.

    Article  Google Scholar 

  41. Robinson PD, Van Asperen P. Asthma in childhood. Pediatr Clin North Am. 2009;56(1):191–226, xii.

    Google Scholar 

  42. Friedman HS, Navaratnam P, McLaughlin J. Adherence and asthma control with mometasone furoate versus fluticasone propionate in adolescents and young adults with mild asthma. J Asthma. 2010;47(9):994–1000.

    PubMed  CAS  Google Scholar 

  43. Milgrom H. Mometasone furoate in children with mild to moderate persistent asthma: a review of the evidence. Paediatr Drugs. 2010;12(4):213–21.

    Article  PubMed  Google Scholar 

  44. Skoner DP, Meltzer EO, Milgrom H, Stryszak P, Teper A, Staudinger H. Effects of inhaled mometasone furoate on growth velocity and adrenal function: a placebo-controlled trial in children 4–9 years old with mild persistent asthma. J Asthma. 2011;48(8):848–59.

    Article  PubMed  CAS  Google Scholar 

  45. Gelfand EW, Georgitis JW, Noonan M, Ruff ME. Once-daily ciclesonide in children: efficacy and safety in asthma. J Pediatr. 2006;148(3):377–83.

    Article  PubMed  CAS  Google Scholar 

  46. Pedersen S, Garcia Garcia ML, Manjra A, Theron I, Engelstatter R. A comparative study of inhaled ciclesonide 160 microg/day and fluticasone propionate 176 microg/day in children with asthma. Pediatr Pulmonol. 2006;41(10):954–61.

    Google Scholar 

  47. Skoner DP, Maspero J, Banerji D. Assessment of the long-term safety of inhaled ciclesonide on growth in children with asthma. Pediatrics. 2008;121(1):e1–14.

    Article  PubMed  Google Scholar 

  48. Korn S, Buhl R. Efficacy of a fixed combination of ciclesonide and formoterol: the EXCITED-study. Respir Med. 2012;106(1):57–67.

    Article  PubMed  Google Scholar 

  49. Cazzola M, Page CP, Calzetta L, Matera MG. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev. 2012;64(3):450–504.

    Article  PubMed  CAS  Google Scholar 

  50. Barnes PJ. Glucocorticosteroids: current and future directions. Br J Pharmacol. 2011;163(1):29–43.

    Article  PubMed  CAS  Google Scholar 

  51. Seddon P, Bara A, Ducharme FM, Lasserson TJ. Oral xanthines as maintenance treatment for asthma in children. Cochrane Database Syst Rev. 2006(1):CD002885.

  52. Cosio BG, Mann B, Ito K, Jazrawi E, Barnes PJ, Chung KF, et al. Histone acetylase and deacetylase activity in alveolar macrophages and blood mononocytes in asthma. Am J Respir Crit Care Med. 2004;170(2):141–7.

    Article  PubMed  Google Scholar 

  53. Derks MG, Koopmans RP, Oosterhoff E, Van Boxtel CJ. Prevention by theophylline of beta-2-receptor down regulation in healthy subjects. Eur J Drug Metab Pharmacokinet. 2000;25(3–4):179–88.

    Google Scholar 

  54. Yasui K, Agematsu K, Shinozaki K, Hokibara S, Nagumo H, Nakazawa T, et al. Theophylline induces neutrophil apoptosis through adenosine A2A receptor antagonism. J Leukoc Biol. 2000;67(4):529–35.

    PubMed  CAS  Google Scholar 

  55. Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med. 2004;200(5):689–95.

    Article  PubMed  CAS  Google Scholar 

  56. Suessmuth S, Freihorst J, Gappa M. Low-dose theophylline in childhood asthma: a placebo-controlled, double-blind study. Pediatr Allergy Immunol. 2003;14(5):394–400.

    Article  PubMed  Google Scholar 

  57. Kondo N, Katsunuma T, Odajima Y, Morikawa A. A randomized open-label comparative study of montelukast versus theophylline added to inhaled corticosteroid in asthmatic children. Allergol Int. 2006;55(3):287–93.

    Article  PubMed  CAS  Google Scholar 

  58. Sankar J, Lodha R, Kabra SK. Doxofylline: The next generation methylxanthine. Indian J Pediatr. 2008;75(3):251–4.

    Article  PubMed  Google Scholar 

  59. Good JT Jr, Rollins DR, Martin RJ. Macrolides in the treatment of asthma. Curr Opin Pulm Med. 2012;18(1):76–84.

    Article  PubMed  CAS  Google Scholar 

  60. Kudoh S. Erythromycin treatment in diffuse panbronchiolitis. Curr Opin Pulm Med. 1998;4(2):116–21.

    Article  PubMed  CAS  Google Scholar 

  61. Wong C, Jayaram L, Karalus N, Eaton T, Tong C, Hockey H, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):660–7.

    Article  PubMed  CAS  Google Scholar 

  62. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290(13):1749–56.

    Article  PubMed  CAS  Google Scholar 

  63. Equi A, Balfour-Lynn IM, Bush A, Rosenthal M. Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet. 2002;360(9338):978–84.

    Article  PubMed  CAS  Google Scholar 

  64. Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP. Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax. 2006;61(10):895–902.

    Article  PubMed  CAS  Google Scholar 

  65. Fleet JE, Guha K, Piper S, Banya W, Bilton D, Hodson ME. A retrospective analysis of the impact of azithromycin maintenance therapy on adults attending a UK cystic fibrosis clinic. J Cyst Fibrosis. 2013;12(1):49–53.

    Google Scholar 

  66. Kamada AK, Hill MR, Ikle DN, Brenner AM, Szefler SJ. Efficacy and safety of low-dose troleandomycin therapy in children with severe, steroid-requiring asthma. J Allergy Clin Immunol. 1993;91(4):873–82.

    Article  PubMed  CAS  Google Scholar 

  67. Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med. 2008;177(2):148–55.

    Article  PubMed  CAS  Google Scholar 

  68. Piacentini GL, Peroni DG, Bodini A, Pigozzi R, Costella S, Loiacono A, et al. Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: a preliminary report. Allergy Asthma Proc. 2007;28(2):194–8.

    Google Scholar 

  69. Flotte TR, Loughlin GM. Benefits and complications of troleandomycin (TAO) in young children with steroid-dependent asthma. Pediatr Pulmonol. 1991;10(3):178–82.

    Article  PubMed  CAS  Google Scholar 

  70. Ball BD, Hill MR, Brenner M, Sanks R, Szefler SJ. Effect of low-dose troleandomycin on glucocorticoid pharmacokinetics and airway hyperresponsiveness in severely asthmatic children. Ann Allergy. 1990;65(1):37–45.

    PubMed  CAS  Google Scholar 

  71. Fost DA, Leung DY, Martin RJ, Brown EE, Szefler SJ, Spahn JD. Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol. 1999;103(6):1031–5.

    Article  PubMed  CAS  Google Scholar 

  72. Varis T, Kivisto KT, Backman JT, Neuvonen PJ. Itraconazole decreases the clearance and enhances the effects of intravenously administered methylprednisolone in healthy volunteers. Pharmacol Toxicol. 1999;85(1):29–32.

    Article  PubMed  CAS  Google Scholar 

  73. Ekici A, Ekici M, Erdemoglu AK. Effect of azithromycin on the severity of bronchial hyperresponsiveness in patients with mild asthma. J Asthma. 2002;39(2):181–5.

    Article  PubMed  CAS  Google Scholar 

  74. Fonseca-Aten M, Okada PJ, Bowlware KL, Chavez-Bueno S, Mejias A, Rios AM, et al. Effect of clarithromycin on cytokines and chemokines in children with an acute exacerbation of recurrent wheezing: a double-blind, randomized, placebo-controlled trial. Ann Allergy Asthma Immunol. 2006;97(4):457–63.

    Article  PubMed  CAS  Google Scholar 

  75. Koutsoubari I, Papaevangelou V, Konstantinou GN, Makrinioti H, Xepapadaki P, Kafetzis D, et al. Effect of clarithromycin on acute asthma exacerbations in children: an open randomized study. Pediatr Allergy Immunol. 2012;23(4):385–90.

    Article  PubMed  Google Scholar 

  76. Kraft M, Cassell GH, Pak J, Martin RJ. Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest. 2002;121(6):1782–8.

    Article  PubMed  CAS  Google Scholar 

  77. Chu HW, Kraft M, Rex MD, Martin RJ. Evaluation of blood vessels and edema in the airways of asthma patients: regulation with clarithromycin treatment. Chest. 2001;120(2):416–22.

    Article  PubMed  CAS  Google Scholar 

  78. Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011;127(2):372–81.e1–3.

    Google Scholar 

  79. Pires dos Santos R, Kuchenbecker R. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012 Aug 23;367(8):774-5; author reply 5.

  80. Hansbro PM, Kaiko GE, Foster PS. Cytokine/anti-cytokine therapy—novel treatments for asthma? Br J Pharmacol. 2011;163(1):81–95.

    Google Scholar 

  81. Alcorn JF, Crowe CR, Kolls JK. TH17 cells in asthma and COPD. Annu Rev Physiol. 2010;72:495–516.

    Article  PubMed  CAS  Google Scholar 

  82. Wills-Karp M, Finkelman FD. Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal. 2008;1(51):pe55.

    Google Scholar 

  83. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98.

    Article  PubMed  CAS  Google Scholar 

  84. Kraft M. Asthma phenotypes and interleukin-13–moving closer to personalized medicine. N Engl J Med. 2011;365(12):1141–4.

    Article  PubMed  CAS  Google Scholar 

  85. Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, et al. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci USA. 2010;107(32):14170–5.

    Article  CAS  PubMed  Google Scholar 

  86. Zeskind B. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(25):2432; author reply 3–4.

  87. Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet. 2007;370(9596):1422–31.

    Article  PubMed  CAS  Google Scholar 

  88. Slager RE, Otulana BA, Hawkins GA, Yen YP, Peters SP, Wenzel SE, et al. IL-4 receptor polymorphisms predict reduction in asthma exacerbations during response to an anti-IL-4 receptor alpha antagonist. J Allergy Clin Immunol. 2012;130(2):516–22.e4.

    Google Scholar 

  89. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360(10):973–84.

    Article  PubMed  CAS  Google Scholar 

  90. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360(10):985–93.

    Article  PubMed  CAS  Google Scholar 

  91. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651–9.

    Article  PubMed  CAS  Google Scholar 

  92. Wu AC, Tantisira K, Li L, Fuhlbrigge AL, Weiss ST, Litonjua A. Effect of Vitamin D and inhaled corticosteroid treatment on lung function in children. Am J Respir Crit Care Med. 2012;186(6):508–13.

    Article  PubMed  CAS  Google Scholar 

  93. Kreindler JL. Is the best offense a good D-fense?: Should we use Vitamin D as adjunctive therapy for asthma? Am J Respir Crit Care Med. 2012;186(6):470–2.

    Article  PubMed  CAS  Google Scholar 

  94. Gupta A, Sjoukes A, Richards D, Banya W, Hawrylowicz C, Bush A, et al. Relationship between serum vitamin D, disease severity, and airway remodeling in children with asthma. Am J Respir Crit Care Med. 2011;184(12):1342–9.

    Article  PubMed  CAS  Google Scholar 

  95. Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J Immunol. 2010;184(2):965–74.

    Article  PubMed  CAS  Google Scholar 

  96. Banerjee A, Damera G, Bhandare R, Gu S, Lopez-Boado Y, Panettieri R Jr, et al. Vitamin D and glucocorticoids differentially modulate chemokine expression in human airway smooth muscle cells. Br J Pharmacol. 2008;155(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  97. Xystrakis E, Kusumakar S, Boswell S, Peek E, Urry Z, Richards DF, et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J Clin Invest. 2006;116(1):146–55.

    Article  PubMed  CAS  Google Scholar 

  98. Bilinski KL, Boyages SC. The rising cost of vitamin D testing in Australia: time to establish guidelines for testing. Med J Aust. 2012;197(2):90.

    Article  PubMed  Google Scholar 

  99. Shee C. Is hypovitaminosis D a consequence rather than cause of disease? Thorax. 2013 [Epub ahead of print].

  100. Sawicki GS, Strunk RC, Schuemann B, Annett R, Weiss S, Fuhlbrigge AL. Patterns of inhaled corticosteroid use and asthma control in the Childhood Asthma Management Program Continuation Study. Annals Allergy Asthma Immunol Official Publ Am Coll Allergy Asthma Immunol. 2010;104(1):30–5.

    Article  CAS  Google Scholar 

  101. Milgrom H, Bender B, Ackerson L, Bowry P, Smith B, Rand C. Noncompliance and treatment failure in children with asthma. J Allergy Clin Immunol. 1996;98(6 Pt 1):1051–7.

    Article  PubMed  CAS  Google Scholar 

  102. Gamble J, Stevenson M, McClean E, Heaney LG. The prevalence of nonadherence in difficult asthma. Am J Respir Crit Care Med. 2009;180(9):817–22.

    Article  PubMed  Google Scholar 

  103. ten Brinke A, Zwinderman AH, Sterk PJ, Rabe KF, Bel EH. “Refractory” eosinophilic airway inflammation in severe asthma: effect of parenteral corticosteroids. Am J Respir Crit Care Med. 2004;170(6):601–5.

    Article  PubMed  Google Scholar 

  104. Bauman LJ, Wright E, Leickly FE, Crain E, Kruszon-Moran D, Wade SL, et al. Relationship of adherence to pediatric asthma morbidity among inner-city children. Pediatrics. 2002;110(1 Pt 1):e6.

    Article  PubMed  Google Scholar 

  105. Bender BG. Overcoming barriers to nonadherence in asthma treatment. J Allergy Clin Immunol. 2002;109(6 Suppl):S554–9.

    Article  PubMed  Google Scholar 

  106. Wieshammer S, Dreyhaupt J. Dry powder inhalers: which factors determine the frequency of handling errors? Respiration. 2008;75(1):18–25.

    Article  PubMed  Google Scholar 

  107. Grover C, Armour C, Van Asperen PP, Moles R, Saini B. Medication use in children with asthma: not a child size problem. J Asthma. 2011;48(10):1085–103.

    Article  PubMed  Google Scholar 

  108. Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol. 2010;125(6):1178–87; quiz 88–9.

    Google Scholar 

  109. Sly PD, Kusel M, Holt PG. Do early-life viral infections cause asthma? J Allergy Clin Immunol. 2010;125(6):1202–5.

    Article  PubMed  CAS  Google Scholar 

  110. Macaubas C, de Klerk NH, Holt BJ, Wee C, Kendall G, Firth M, et al. Association between antenatal cytokine production and the development of atopy and asthma at age 6 years. Lancet. 2003;362(9391):1192–7.

    Article  PubMed  CAS  Google Scholar 

  111. Kusel MM, de Klerk NH, Kebadze T, Vohma V, Holt PG, Johnston SL, et al. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J Allergy Clin Immunol. 2007;119(5):1105–10.

    Article  PubMed  Google Scholar 

  112. Evans DJ, Barnes PJ, Spaethe SM, van Alstyne EL, Mitchell MI, O’Connor BJ. Effect of a leukotriene B4 receptor antagonist, LY293111, on allergen induced responses in asthma. Thorax. 1996;51(12):1178–84.

    Article  PubMed  CAS  Google Scholar 

  113. Rao NL, Riley JP, Banie H, Xue X, Sun B, Crawford S, et al. Leukotriene A(4) hydrolase inhibition attenuates allergic airway inflammation and hyperresponsiveness. Am J Respir Crit Care Med. 2010;181(9):899–907.

    Article  PubMed  CAS  Google Scholar 

  114. Magrioti V, Kokotos G. Phospholipase A2 inhibitors as potential therapeutic agents for the treatment of inflammatory diseases. Expert Opin Ther Pat. 2010;20(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  115. Grant GE, Rokach J, Powell WS. 5-Oxo-ETE and the OXE receptor. Prostaglandins Other Lipid Mediat. 2009;89(3–4):98–104.

    Article  PubMed  CAS  Google Scholar 

  116. Balzar S, Fajt ML, Comhair SA, Erzurum SC, Bleecker E, Busse WW, et al. Mast cell phenotype, location, and activation in severe asthma. Data from the Severe Asthma Research Program. Am J Respir Crit Care Med. 2011;183(3):299–309.

    Google Scholar 

  117. Barnes N, Pavord I, Chuchalin A, Bell J, Hunter M, Lewis T, et al. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy. 2012;42(1):38–48.

    Article  PubMed  CAS  Google Scholar 

  118. Philip G, van Adelsberg J, Loeys T, Liu N, Wong P, Lai E, et al. Clinical studies of the DP1 antagonist laropiprant in asthma and allergic rhinitis. J Allergy Clin Immunol. 2009;124(5):942–8.e1–9.

    Google Scholar 

  119. Shiga M, Horiguchi T, Kondo R, Miyazaki J, Hirose M, Otake Y, et al. Long-term monotherapy with suplatast tosilate in patients with mild atopic asthma: a pilot comparison with low-dose inhaled fluticasone. Asian Pac J Allergy Immunol. 2011;29(2):134–42.

    PubMed  CAS  Google Scholar 

  120. Wada M, Nagata S, Kudo T, Shimizu T, Yamashiro Y. Effect of suplatast tosilate on antileukotriene non-responders with mild-to-moderate persistent asthma. Allergol Int. 2009;58(3):389–93.

    Article  PubMed  CAS  Google Scholar 

  121. Matsui E, Shinoda S, Fukutomi O, Kaneko H, Fukao T, Kondo N. Relationship between the benefits of suplatast tosilate, a Th2 cytokine inhibitor, and gene polymorphisms in children with bronchial asthma. Exp Ther Med. 2010;1(6):977–82.

    PubMed  CAS  Google Scholar 

  122. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–32.

    Article  PubMed  CAS  Google Scholar 

  123. Busse WW, Katial R, Gossage D, Sari S, Wang B, Kolbeck R, et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010;125(6):1237–44.e2.

    Google Scholar 

  124. Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, et al. A phase 2 placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41(2):330–8.

    Google Scholar 

  125. Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med. 2010;181(8):788–96.

    Article  PubMed  CAS  Google Scholar 

  126. Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354(7):697–708.

    Article  PubMed  CAS  Google Scholar 

  127. Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005;60(12):1012–8.

    Article  PubMed  CAS  Google Scholar 

  128. Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009;179(7):549–58.

    Article  PubMed  CAS  Google Scholar 

  129. Dubreuil P, Letard S, Ciufolini M, Gros L, Humbert M, Casteran N, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS ONE. 2009;4(9):e7258.

    Article  PubMed  CAS  Google Scholar 

  130. Humbert M, de Blay F, Garcia G, Prud’homme A, Leroyer C, Magnan A, et al. Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics. Allergy. 2009;64(8):1194–201.

    Article  PubMed  CAS  Google Scholar 

  131. Peters SP, Kunselman SJ, Icitovic N, Moore WC, Pascual R, Ameredes BT, et al. Tiotropium bromide step-up therapy for adults with uncontrolled asthma. N Engl J Med. 2010;363(18):1715–26.

    Article  PubMed  CAS  Google Scholar 

  132. Bateman ED, Kornmann O, Schmidt P, Pivovarova A, Engel M, Fabbri LM. Tiotropium is noninferior to salmeterol in maintaining improved lung function in B16-Arg/Arg patients with asthma. J Allergy Clin Immunol. 2011;128(2):315–22.

    Article  PubMed  CAS  Google Scholar 

  133. Gauvreau GM, Boulet LP, Schmid-Wirlitsch C, Cote J, Duong M, Killian KJ, et al. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects. Respir Res. 2011;12:140.

    Article  PubMed  CAS  Google Scholar 

  134. Page CP, Spina D. Selective PDE inhibitors as novel treatments for respiratory diseases. Curr Opin Pharmacol. 2012;12(3):275–86.

    Article  PubMed  CAS  Google Scholar 

  135. Maneechotesuwan K, Ekjiratrakul W, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Statins enhance the anti-inflammatory effects of inhaled corticosteroids in asthmatic patients through increased induction of indoleamine 2, 3-dioxygenase. J Allergy Clin Immunol. 2010;126(4):754–62.e1.

    Google Scholar 

  136. Moini A, Azimi G, Farivar A. Evaluation of atorvastatin for the treatment of patients with asthma: a double-blind randomized clinical trial. Allergy Asthma Immunol Res. 2012;4(5):290–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Dr Robinson has no conflicts of interest directly relevant to the content of this review. Dr Van Asperen has participated in advisory boards of MSD, GlaxoSmithKline and Novartis, and has received speaker’s honoraria from MSD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, P.D., Van Asperen, P. Newer Treatments in the Management of Pediatric Asthma. Pediatr Drugs 15, 291–302 (2013). https://doi.org/10.1007/s40272-013-0020-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-013-0020-x

Keywords

Navigation