Skip to main content
Log in

Therapeutic Strategies for the Treatment of Severe Cushing’s Syndrome

  • Therapy in Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Severe Cushing’s syndrome presents an acute emergency and is defined by massively elevated random serum cortisol [more than 36 μg/dL (1000 nmol/L)] at any time or a 24-h urinary free cortisol more than fourfold the upper limit of normal and/or severe hypokalaemia (<3.0 mmol/L), along with the recent onset of one or more of the following: sepsis, opportunistic infection, intractable hypokalaemia, uncontrolled hypertension, heart failure, gastrointestinal haemorrhage, glucocorticoid-induced acute psychosis, progressive debilitating myopathy, thromboembolism or uncontrolled hyperglycaemia and ketocacidosis. Treatment focuses on the management of the severe metabolic disturbances followed by rapid resolution of the hypercortisolaemia, and subsequent confirmation of the cause. Emergency lowering of the elevated serum cortisol is most rapidly achieved with oral metyrapone and/or ketoconazole; if parenteral therapy is required then intravenous etomidate is rapidly effective in almost all cases, but all measures require careful supervision. The optimal order and combination of drugs to treat severe hypercortisolaemia—mostly in the context of ectopic ACTH-secreting syndrome, adrenocortical carcinoma or an ACTH-secreting pituitary adenoma (mainly macroadenomas)—is not yet established. Combination therapy may be useful not only to rapidly control cortisol excess but also to lower individual drug dosages and consequently the possibility of adverse effects. If medical treatments fail, bilateral adrenalectomy should be performed in the shortest possible time span to prevent the debilitating complications of uncontrolled hypercortisolaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newell-Price J, Bertagna X, Grossman AB, et al. Cushing’s syndrome. Lancet. 2006;367:1605–17.

    Article  CAS  PubMed  Google Scholar 

  2. Sarlis NJ, Chanock SJ, Nieman LK. Cortisolemic indices predict severe infections in Cushing syndrome due to ectopic production of adrenocorticotropin. J Clin Endocrinol Metab. 2000;85:42–7.

    CAS  PubMed  Google Scholar 

  3. Corcuff JB, Young J, Masquefa-Giraud P, et al. Rapid control of severe neoplastic hypercortisolism with metyrapone and ketoconazole. Eur J Endocrinol. 2015;172:473–8.

    Article  CAS  PubMed  Google Scholar 

  4. Reincke M, Ritzel K, Osswald A, et al. A critical re-appraisal of bilateral adrenalectomy for ACTH-dependent Cushing’s syndrome. Eur J Endocrinol. 2015;173:M23–32.

    Article  CAS  PubMed  Google Scholar 

  5. Lindholm J, Juul S, Jørgensen JO, et al. Incidence and late prognosis of Cushing’s syndrome: a population-based study. J Clin Endocrinol Metab. 2001;86:117–23.

    CAS  PubMed  Google Scholar 

  6. van Haalen FM, Broersen LH, Jorgensen JO, et al. Management of endocrine disease: mortality remains increased in Cushing’s disease despite biochemical remission: a systematic review and meta-analysis. Eur J Endocrinol. 2015;172:R143–9.

    Article  PubMed  Google Scholar 

  7. Nieman LK, Biller BM, Findling JW, et al. Treatment of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:2807–31.

    Article  CAS  PubMed  Google Scholar 

  8. Van Zaane B, Nur E, Squizzato A, et al. Hypercoagulable state in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab. 2009;94:2743–50.

    Article  PubMed  Google Scholar 

  9. Kamenický P, Droumaguet C, Salenave S, et al. Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab. 2011;96:2796–804.

    Article  PubMed  Google Scholar 

  10. Alexandraki KI, Grossman AB. Emergency treatment of florid Cushing’s Syndrome in endocrine and metabolic medical emergencies: a clinician’s guide. Endocrine Press. 2014. doi:10.1210/EME.9781936704811.ch16.

    Google Scholar 

  11. Alexandraki KI, Grossman AB. Cushing’s syndrome. In: Bandeira F, Gharib H, Golbert A, Griz L, Faria M, editors. Endocrinology and diabetes: a problem oriented approach. New York: Springer Science + Business Media; 2014. p. 99–111.

    Chapter  Google Scholar 

  12. Singh Y, Kotwal N, Menon AS. Endocrine hypertension—Cushing’s syndrome. Indian J Endocrinol Metab. 2011;15(Suppl 4):S313–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arlt A, Harbeck B, Anlauf M, et al. Fatal pneumocystis jirovecii pneumonia in a case of ectopic Cushing’s syndrome due to neuroendocrine carcinoma of the kidney. Exp Clin Endocrinol Diabetes. 2008;116:515–9.

    Article  CAS  PubMed  Google Scholar 

  14. Christ-Crain M, Jutla S, Widmer I, et al. Measurement of serum free cortisol shows discordant responsivity to stress and dynamic evaluation. J Clin Endocrinol Metab. 2007;92:1729–35.

    Article  CAS  PubMed  Google Scholar 

  15. Boonen E, Bornstein SR, Van den Berghe G. New insights into the controversy of adrenal function during critical illness. Lancet Diabetes Endocrinol. 2015;3:805–15.

    Article  CAS  PubMed  Google Scholar 

  16. Moraes RB, Czepielewski MA, Friedman G, et al. Diagnosis of adrenal failure in critically ill patients. Arq Bras Endocrinol Metabol. 2011;55:295–302.

    Article  PubMed  Google Scholar 

  17. Faucz FR1, Zilbermint M, Lodish MB, et al. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab. 2014;99:E1113–9.

  18. Epperla N, McKiernan F. Iatrogenic Cushing syndrome and adrenal insufficiency during concomitant therapy with ritonavir and fluticasone. Springerplus. 2015;4:455.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pai M, Douketis JD, section editors, Lawrence LK Leung, Jess Mandel, Deputy Editor Geraldine Finlay. Prevention of venous thromboembolic disease in medical patients. Topic 1346 version 40.0. Literature review current through: Mar 2013. This topic last updated: Feb 12, 2013.

  20. Oosterhuis JK, van den Berg G, Monteban-Kooistra WE, et al. Life-threatening Pneumocystis jiroveci pneumonia following treatment of severe Cushing’s syndrome. Neth J Med. 2007;65:215–7.

    CAS  PubMed  Google Scholar 

  21. Drake WM, Perry LA, Hinds CJ, et al. Emergency and prolonged use of intravenous etomidate to control hypercortisolemia in a patient with Cushing’s syndrome and peritonitis. J Clin Endocrinol Metab. 1998;83:3542–4.

    CAS  PubMed  Google Scholar 

  22. Stuijver DJ, van Zaane B, Feelders RA, et al. Incidence of venous thromboembolism in patients with Cushing’s syndrome: a multicenter cohort study. J Clin Endocrinol Metab. 2011;96:3525–32.

    Article  CAS  PubMed  Google Scholar 

  23. van der Pas R, de Herder WW, Hofland LJ, et al. New developments in the medical treatment of Cushing’s syndrome. Endocr Relat Cancer. 2012;19:R205–23.

    Article  PubMed  Google Scholar 

  24. Hall JJ, Hughes CA, Foisy MM, et al. Iatrogenic Cushing syndrome after intra-articular triamcinolone in a patient receiving ritonavir-boosted darunavir. Int J STD AIDS. 2013;24:748–52.

    Article  PubMed  Google Scholar 

  25. Alexandraki KI, Grossman AB. Medical therapy for Cushing’s disease: past and future modes of treatment. Eur Endocrinol. 2009;4:74–80.

    Article  Google Scholar 

  26. Cuevas-Ramos D, Fleseriu M. Treatment of Cushing’s disease: a mechanistic update. J Endocrinol. 2014;223:R19–39.

    Article  CAS  PubMed  Google Scholar 

  27. Jeffcoate WJ, Rees LH, Tomlin S, et al. Metyrapone in long-term management of Cushing’s disease. Br J Med. 1977;2:215–7.

    Article  CAS  Google Scholar 

  28. Donckier J, Burrin JM, Ramsay ID, et al. Successful control of Cushing’s disease in the elderly with long term metyrapone. Postgrad Med J. 1986;62:727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Daniel E, Aylwin S, Mustafa O, et al. Effectiveness of metyrapone in the treatment of Cushing’s Syndrome: a retrospective multicenter study in 195 patients. J Clin Endocrinol Metab. 2015;100:4146–54.

    Article  PubMed  Google Scholar 

  30. Verhelst JA, Trainer PJ, Howlett TA, et al. Short- and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin Endocrinol. 1991;35:169–78.

    Article  CAS  Google Scholar 

  31. Monaghan PJ, Owen LJ, Trainer PJ, et al. Comparison of serum cortisol measurement by immunoassay and liquid chromatography-tandem mass spectrometry in patients receiving the 11β-hydroxylase inhibitor metyrapone. Ann Clin Biochem. 2011;48:441–6.

    Article  CAS  PubMed  Google Scholar 

  32. Loose DS, Kan PB, Hirst MA, et al. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J Clin Invest. 1983;71:1495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jimenez Reina L, Leal-Cerro A, Garcia J, et al. In vitro effects of ketoconazole on corticotrope cell morphology and ACTH secretion of two pituitary adenomas removed from patients with Nelson’s syndrome. Acta Endocrinol (Copenh), 1989;121:185–90.

  34. Loose DS, Stover EP, Feldman D. Ketoconazole binds to glucocorticoid receptors and exhibits glucocorticoid antagonist activity in cultured cells. J Clin Invest. 1983;72:404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Castinetti F, Morange I, Jaquet P, et al. Ketoconazole revisited: a preoperative or postoperative treatment in Cushing’s disease. Eur J Endocrinol. 2008;158:91–9.

    Article  CAS  PubMed  Google Scholar 

  36. Duarte PA, Chow CC, Simmons F, et al. Fatal hepatitis associated with ketoconazole therapy. Arch Intern Med. 1984;144:1069–70.

    Article  CAS  PubMed  Google Scholar 

  37. Castinetti F, Guignat L, Giraud P, et al. Ketoconazole in Cushing’s disease: is it worth a try? J Clin Endocrinol Metab. 2014;99:1623–30.

    Article  CAS  PubMed  Google Scholar 

  38. Salvatori R, DelConte A, Geer EB, et al. An open-label study to assess the safety and efficacy of levoketoconazole (COR-003) in the treatment of endogenous Cushing’s syndrome. In: Program of the 97th annual meeting of The Endocrine Society, March 5–8, 2015; San Diego, CA. Abstract endocrine reviews. 2015;36:376.

  39. Lamberts SW, Bons EG, Bruining HA, et al. Differential effects of the imidazole derivatives etomidate, ketoconazole and miconazole and of metyrapone on the secretion of cortisol and its precursors by human adrenocortical cells. J Pharmacol Exp Ther. 1987;240:259–64.

    CAS  PubMed  Google Scholar 

  40. Klausen NO, Moelgaard J, Ferguson AH, et al. Negative synacthen test during etomidate infusion. Lancet. 1983;2:848.

    Article  CAS  PubMed  Google Scholar 

  41. Krakoff J, Koch CA, Calis KA, et al. Use of a parenteral propylene glycol-containing etomidate preparation for the long-term management of ectopic Cushing’s syndrome. J Clin Endocrinol Metab. 2001;86:4104–8.

    CAS  PubMed  Google Scholar 

  42. Johnson TN, Canada TW. Etomidate use for Cushing’s syndrome caused by an ectopic adrenocorticotropic hormone-producing tumor. Ann Pharmacother. 2007;41:350–3.

    Article  CAS  PubMed  Google Scholar 

  43. Greening JE, Brain CE, Perry LA, et al. Efficient short-term control of hypercortisolaemia by low-dose etomidate in severe paediatric Cushing’s disease. Horm Res. 2005;64:140–3.

    Article  CAS  PubMed  Google Scholar 

  44. Preda VA, Sen J, Karavitaki N, Ab Grossman, et al. Etomidate in the management or hypercortisolaemia in Cushing’s syndrome: a review. Eur J Endocrinol. 2012;167:137–43.

    Article  CAS  PubMed  Google Scholar 

  45. Schulte HM, Benker G, Reinwein D, et al. Infusion of low dose etomidate: correction of hypercortislemia in patients with Cushing’s syndrome and dose–response relationship in normal subjects. J Clin Endocrinol Metab. 1990;70:1426–30.

    Article  CAS  PubMed  Google Scholar 

  46. Ntali G, Asimakopoulou A, Siamatras T, et al. Mortality in Cushing’s syndrome: systematic analysis of a large series with prolonged follow-up. Eur J Endocrinol. 2013;8(169):715–23.

    Article  Google Scholar 

  47. Morris LF, Harris RS, Milton DR, et al. Impact and timing of bilateral adrenalectomy for refractory adrenocorticotropic hormone-dependent Cushing’s syndrome. Surgery. 2013;154:1174–83.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Farage M, Costa MA, Godoy-Matos AF. A rare case of Cushing syndrome by cyclic ectopic-ACTH. Arq Bras Endocrinol Metabol. 2012;56:324–30.

    Article  PubMed  Google Scholar 

  49. Cueto C, Brown JHU. Biological studies on an adrenocorticolytic agent and the isolation of the active components. Endocrinology. 1958;62:326–33.

    Article  CAS  PubMed  Google Scholar 

  50. Kroiss M, Quinkler M, Lutz WK, et al. Drug interactions with mitotane by induction of CYP3A4 metabolism in the clinical management of adrenocortical carcinoma. Clin Endocrinol (Oxf). 2011;75:585–91.

    Article  CAS  Google Scholar 

  51. Alexandraki KI, Kaltsas GA, le Roux CW, et al. Assessment of serum-free cortisol levels in patients with adrenocortical carcinoma treated with mitotane: a pilot study. Clin Endocrinol (Oxf). 2010;72:305–11.

    Article  CAS  Google Scholar 

  52. Bertagna X, Bertagna C, Laudat MH, et al. Pituitary-adrenal response to the antiglucocorticoid action of RU 486 in Cushing’s syndrome. J Clin Endocrinol Metab. 1986;63:639–43.

    Article  CAS  PubMed  Google Scholar 

  53. Fleseriu M, Biller BM, Findling JW, et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97:2039–49.

    Article  CAS  PubMed  Google Scholar 

  54. de Bruin C, Hofland LJ, Nieman LK, et al. Mifepristone effects on tumor somatostatin receptor expression in two patients with Cushing’s syndrome due to ectopic adrenocorticotropin secretion. J Clin Endocrinol Metab. 2012;97:455–62.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Castinetti F, Fassnacht M, Johanssen S, et al. Merits and pitfalls of mifepristone in Cushing’s syndrome. Eur J Endocrinol. 2009;160:1003–10.

    Article  CAS  PubMed  Google Scholar 

  56. Chu JW, Matthias DF, Belanoff J, et al. Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab. 2001;86:3568–73.

    CAS  PubMed  Google Scholar 

  57. Fleseriu M, Findling JW, Koch CA, et al. Changes in plasma ACTH levels and corticotroph tumor size in patients with Cushing’s disease during long-term treatment with the glucocorticoid receptor antagonist mifepristone. J Clin Endocrinol Metab. 2014;99:3718–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calhoun DA, White WB, Krum H, et al. Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation. 2011;124:1945–55.

    Article  CAS  PubMed  Google Scholar 

  59. Bertagna X, Pivonello R, Fleseriu M, et al. LCI699, a potent 11β-hydroxylase inhibitor, normalizes urinary cortisol in patients with Cushing’s disease: results from a multicenter, proof-of-concept study. J Clin Endocrinol Metab. 2014;99:1375–83.

    Article  CAS  PubMed  Google Scholar 

  60. Daniel E, Newell-Price JD. Therapy of endocrine disease: steroidogenesis enzyme inhibitors in Cushing’s syndrome. Eur J Endocrinol. 2015;172:R263–80.

    Article  CAS  PubMed  Google Scholar 

  61. Riedl M, Maier C, Zettinig G, et al. Long term control of hypercortisolism with fluconazole: case report and in vitro studies. Eur J Endocrinol. 2006;154:519–24.

    Article  CAS  PubMed  Google Scholar 

  62. Schwetz V, Aberer F, Stiegler C, et al. Fluconazole and acetazolamide in the treatment of ectopic Cushing’s syndrome with severe metabolic alkalosis. Endocrinol Diabetes Metab Case Rep. 2015;2015:150027.

    PubMed  PubMed Central  Google Scholar 

  63. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20:157–98.

    Article  CAS  PubMed  Google Scholar 

  64. Miller GM, Alexander JM, Bikkal HA, et al. Somatostatin receptor subtype gene expression in pituitary adenomas. J Clin Endocrinol Metab. 1995;80:1386–92.

    CAS  PubMed  Google Scholar 

  65. Schonbrunn A. Glucocorticoids down-regulate somatostatin receptors on pituitary cells in culture. Endocrinology. 1982;110:1147–54.

    Article  CAS  PubMed  Google Scholar 

  66. Stalla GK, Brockmeier SJ, Renner U, et al. Octreotide exerts different effects in vivo and in vitro in Cushing’s disease. Eur J Endocrinol. 1994;130:125–31.

    Article  CAS  PubMed  Google Scholar 

  67. van der Pas R, Feelders RA, Gatto F, et al. Preoperative normalization of cortisol levels in Cushing’s disease after medical treatment: consequences for somatostatin and dopamine receptor subtype expression and in vitro response to somatostatin analogs and dopamine agonists. J Clin Endocrinol Metab. 2013;98:E1880–90.

    Article  PubMed  Google Scholar 

  68. Park S, Kamegai J, Kineman RD. Role of glucocorticoids in the regulation of pituitary somatostatin receptor subtype (sst1-sst5) mRNA levels: evidence for direct and somatostatin-mediated effects. Neuroendocrinology. 2003;78:163–75.

    Article  CAS  PubMed  Google Scholar 

  69. van der Hoek J, Waaijers M, van Koetsveld PM, et al. Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab. 2005;289:E278–87.

    Article  PubMed  Google Scholar 

  70. Boscaro M, Ludlam WH, Atkinson B, et al. Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin Endocrinol Metab. 2009;94:115–22.

    Article  CAS  PubMed  Google Scholar 

  71. Colao A, Petersenn S, Newell-Price J, et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med. 2012;366:914–24.

    Article  CAS  PubMed  Google Scholar 

  72. Simeoli C, Auriemma RS, Tortora F, et al. The treatment with pasireotide in Cushing’s disease: effects of long-term treatment on tumor mass in the experience of a single center. Endocrine. 2015;50:725–40.

    Article  CAS  PubMed  Google Scholar 

  73. de Bruin C, Feelders RA, Lamberts SW, et al. Somatostatin and dopamine receptors as targets for medical treatment of Cushing’s syndrome. Rev Endocr Metab Disord. 2009;10:91–102.

    Article  CAS  PubMed  Google Scholar 

  74. Feelders RA, de Bruin C, Pereira AM, et al. Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med. 2010;362:1846–8.

    Article  CAS  PubMed  Google Scholar 

  75. Caron MG, Beaulieu M, Raymond V, et al. Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J Biol Chem. 1978;253:2244–53.

    CAS  PubMed  Google Scholar 

  76. Stefaneanu L, Kovacs K, Horvath E, et al. Dopamine D2 receptor gene expression in human adenohypophysial adenomas. Endocrine. 2001;14:329–36.

    Article  CAS  PubMed  Google Scholar 

  77. Pivonello R, Ferone D, de Herder WW, et al. Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab. 2004;89:2452–62.

    Article  CAS  PubMed  Google Scholar 

  78. Cronin MJ, Cheung CY, Wilson CB, et al. [3H]Spiperone binding to human anterior pituitaries and pituitary adenomas secreting prolactin, growth hormone, and adrenocorticotropic hormone. J Clin Endocrinol Metab. 1980;50:387–91.

    Article  CAS  PubMed  Google Scholar 

  79. Pirker W, Riedl M, Luger A, et al. Dopamine D2 receptor imaging in pituitary adenomas using iodine-123-epidepride and SPECT. J Nucl Med. 1996;37:1931–7.

    CAS  PubMed  Google Scholar 

  80. Pivonello R, De Martino MC, Cappabianca P, et al. The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab. 2009;94:223–30.

    Article  CAS  PubMed  Google Scholar 

  81. Lila AR, Gopal RA, Acharya SV, et al. 2010 efficacy of cabergoline in uncured (persistent or recurrent) Cushing disease after pituitary surgical treatment with or without radiotherapy. Endocr Pract. 2010;16:968–76.

    Article  PubMed  Google Scholar 

  82. Godbout A, Manavela M, Danilowicz K, et al. Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol. 2010;163:709–16.

    Article  CAS  PubMed  Google Scholar 

  83. Zanettini R, Antonini A, Gatto G, et al. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med. 2007;356:39–46.

  84. Schade R, Andersohn F, Suissa S, et al. Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med. 2007;356:29–38.

    Article  CAS  PubMed  Google Scholar 

  85. Delgado V, Biermasz NR, van Thiel SW, et al. Changes in heart valve structure and function in patients treated with dopamine agonists for prolactinomas, a 2-year follow-up study. Clin Endocrinol (Oxf). 2012;77:99–105.

    Article  CAS  Google Scholar 

  86. Pivonello R, Ferone D, de Herder WW, et al. Dopamine receptor expression and function in corticotroph ectopic tumors. J Clin Endocrinol Metab. 2007;92:65–9.

    Article  CAS  PubMed  Google Scholar 

  87. Barbot M, Albiger N, Ceccato F, et al. Combination therapy for Cushing’s disease: effectiveness of two schedules of treatment: should we start with cabergoline or ketoconazole? Pituitary. 2014;17:109–17.

    Article  CAS  PubMed  Google Scholar 

  88. McCormack AI, Wass JA, Grossman AB. Aggressive pituitary tumours: the role of temozolomide and the assessment of MGMT status. Eur J Clin Invest. 2011;41:1133–48.

    Article  CAS  PubMed  Google Scholar 

  89. Dillard TH, Gultekin SH, Delashaw JB Jr, et al. Temozolomide for corticotroph pituitary adenomas refractory to standard therapy. Pituitary. 2011;14:80–91.

    Article  CAS  PubMed  Google Scholar 

  90. Curtò L, Torre ML, Ferraù F, et al. Temozolomide-induced shrinkage of a pituitary carcinoma causing Cushing’s disease—report of a case and literature review. ScientificWorldJournal. 2010;10:2132–8.

    Article  PubMed  Google Scholar 

  91. Alexandraki K, Boutzios G, Nikolopoulos G, et al. Optic neuropathy following radiotherapy for Cushing’s disease followed by the diagnosis of pituitary carcinoma. Endocrine Abstracts. 2015;37(EP75):4.

    Google Scholar 

  92. Corsello SM, Senes P, Iezzi R, Rufini, et al. Cushing’s syndrome due to a bronchial ACTH-secreting carcinoid successfully treated with radiofrequency ablation (RFA). J Clin Endocrinol Metab. 2014;99:E862–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

ABG has received consulting and lecture fees from Novartis, Ipsen and HRA Pharma. KIA has nothing to declare. No funding was used in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley B. Grossman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandraki, K.I., Grossman, A.B. Therapeutic Strategies for the Treatment of Severe Cushing’s Syndrome. Drugs 76, 447–458 (2016). https://doi.org/10.1007/s40265-016-0539-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-016-0539-6

Keywords

Navigation