Skip to main content
Log in

Disease-Modifying Drugs in Parkinson’s Disease

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Despite an increased understanding of the pathogenesis of Parkinson’s disease (PD), and a number of drugs designed to ameliorate symptoms, finding an effective neuroprotective therapy remains elusive. For decades now, several promising agents targeting different pathways have been explored as potential treatments that could help slow disease progression, but these have met with limited success. There are hurdles to overcome, particularly given that there is no exact animal model of PD and also no reliable biomarkers for PD. Without biomarkers, it is not possible to demonstrate, in the context of a clinical trial, that an intervention prevents neuronal degeneration. However, given the compelling scientific rationale of several compounds, an unrelenting pursuit continues. There have been hundreds of human studies looking at neuroprotection in PD. This article will briefly summarize several of the neuroprotective treatments that have been evaluated in large clinical trials, and will also outline some of the newer therapies that are currently being explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–6.

    Article  CAS  PubMed  Google Scholar 

  2. Riederer P, Wuketich S. Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm. 1976;38(3–4):277–301.

    Article  CAS  PubMed  Google Scholar 

  3. Fereshtehnejad SM, Romenets SR, Anang JB, Latreille V, Gagnon JF, Postuma RB. New clinical subtypes of Parkinson disaese and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol. 2015;72(8):863–73.

    Article  PubMed  Google Scholar 

  4. Marsden CD, Olanow CW. The causes of Parkinson’s disease are being unraveled and rational neuroprotective therapy is close to reality. Ann Neurol. 1998;44(3 Suppl 1):S189–96.

    Article  CAS  PubMed  Google Scholar 

  5. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.

    Article  CAS  PubMed  Google Scholar 

  6. Kieburtz K, Wunderle KB. Parkinson’s disease: evidence for environmental risk factors. Mov Disord Off J Mov Disord Soc. 2013;28(1):8–13.

    Article  CAS  Google Scholar 

  7. Lang AE, Melamed E, Poewe W, Rascol O. Trial designs used to study neuroprotective therapy in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2013;28(1):86–95.

    Article  CAS  Google Scholar 

  8. Ravina BM, Fagan SC, Hart RG, Hovinga CA, Murphy DD, Dawson TM, et al. Neuroprotective agents for clinical trials in Parkinson’s disease: a systematic assessment. Neurology. 2003;60(8):1234–40.

    Article  CAS  PubMed  Google Scholar 

  9. Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdium MB, Naoi M. Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol. 2002;24(5):675–82.

    Article  CAS  PubMed  Google Scholar 

  10. DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Parkinson Study Group. Arch Neurol. 1989;46(10):1052–60.

  11. Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. New Engl. J Med. 1989;321(20):1364–71.

    Google Scholar 

  12. Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. New Engl J Med. 1993;328(3):176–83.

    Article  Google Scholar 

  13. Olanow CW, Hauser RA, Gauger L, Malapira T, Koller W, Hubble J, et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol. 1995;38(5):771–7.

    Article  CAS  PubMed  Google Scholar 

  14. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Parkinson Study Group. Ann Neurol. 1996;39(1):37–45.

  15. Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol. 2002;59(12):1937–43.

    Article  Google Scholar 

  16. Parkinson Study Group. A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study. Arch Neurol. 2005;62(2):241–8.

    Article  Google Scholar 

  17. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet. 2005;365(9463):947–54.

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama W, Yamamoto T, Kitani K, Carrillo MC, Youdim M, Naoi M. Mechanism underlying anti-apoptotic activity of a (−)deprenyl-related propargylamine, rasagiline. Mech Ageing Dev. 2000;116(2–3):181–91.

    Article  CAS  PubMed  Google Scholar 

  19. Huang W, Chen Y, Shohami E, Weinstock M. Neuroprotective effect of rasagiline, a selective monoamine oxidase-B inhibitor, against closed head injury in the mouse. Eur J Pharmacol. 1999;366(2–3):127–35.

    Article  CAS  PubMed  Google Scholar 

  20. Youdim MB, Bar Am O, Yogev-Falach M, Weinreb O, Maruyama W, Naoi M, et al. Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. J Neurosci Res. 2005;79(1–2):172–9.

    Article  CAS  PubMed  Google Scholar 

  21. Parkinson Study Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol. 2004;61(4):561–6.

    Article  Google Scholar 

  22. Hauser RA, Lew MF, Hurtig HI, Ondo WG, Wojcieszek J, Fitzer-Attas CJ. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2009;24(4):564–73.

    Article  Google Scholar 

  23. Olanow CW, Hauser RA, Jankovic J, Langston W, Lang A, Poewe W, et al. A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson’s disease (the ADAGIO study): rationale, design, and baseline characteristics. Mov Disord Off J Mov Disord Soc. 2008;23(15):2194–201.

    Article  Google Scholar 

  24. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. New Engl J Med. 2009;361(13):1268–78.

    Article  CAS  PubMed  Google Scholar 

  25. Caccia C, Maj R, Calabresi M, Maestroni S, Faravelli L, Curatolo L, et al. Safinamide: from molecular targets to a new anti-Parkinson drug. Neurology. 2006;67(7 Suppl 2):S18–23.

    Article  CAS  PubMed  Google Scholar 

  26. Stocchi F, Borgohain R, Onofrj M, Schapira AH, Bhatt M, Lucini V, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov Disord Off J Mov Disord Soc. 2012;27(1):106–12.

    Article  CAS  Google Scholar 

  27. Schapira AH, Stocchi F, Borgohain R, Onofrj M, Bhatt M, Lorenzana P, et al. Long-term efficacy and safety of safinamide as add-on therapy in early Parkinson’s disease. Eur J Neurol Off J Eur Fed Neurol Soc. 2013;20(2):271–80.

    CAS  Google Scholar 

  28. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt M, Chirilineau D, et al. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov Disord Off J Mov Disord Soc. 2014;29(2):229–37.

    Article  CAS  Google Scholar 

  29. Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol. 1989;26(6):719–23.

    Article  PubMed  Google Scholar 

  30. Shults CW, Haas RH, Beal MF. A possible role of coenzyme Q10 in the etiology and treatment of Parkinson’s disease. BioFactors. 1999;9(2–4):267–72.

    Article  CAS  PubMed  Google Scholar 

  31. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002;59(10):1541–50.

    Article  PubMed  Google Scholar 

  32. Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, Haas R, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 2014;71(5):543–52.

    Article  PubMed  Google Scholar 

  33. Tarnopolsky MA, Beal MF. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol. 2001;49(5):561–74.

    Article  CAS  PubMed  Google Scholar 

  34. Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol. 1999;157(1):142–9.

    Article  CAS  PubMed  Google Scholar 

  35. NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 2006;66(5):664–71.

    Article  Google Scholar 

  36. Kieburtz K, Tilley BC, Elm JJ, Babcock D, Hauser R, Ross GW, et al. Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA. 2015;313(6):584–93.

    Article  PubMed  Google Scholar 

  37. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447(7148):1081–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kupsch A, Sautter J, Schwarz J, Riederer P, Gerlach M, Oertel WH. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res. 1996;741(1–2):185–96.

    Article  CAS  PubMed  Google Scholar 

  39. Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis. 2011;43(2):364–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen JH, Friis S. L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol. 2010;67(5):600–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Pasternak B, Svanstrom H, Nielsen NM, Fugger L, Melbye M, Hviid A. Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol. 2012;175(7):627–35.

    Article  PubMed  Google Scholar 

  42. Simuni T, Borushko E, Avram MJ, Miskevics S, Martel A, Zadikoff C, et al. Tolerability of isradipine in early Parkinson’s disease: a pilot dose escalation study. Mov Disord Off J Mov Disord Soc. 2010;25(16):2863–6.

    Article  Google Scholar 

  43. Simuni T, Biglan K, Oakes D, et al. Phase II safety, tolerability, and dose selection study of isradipine as a potential disease-modifying intervention in early Parkinson’s disease (STEADY-PD). Mov Disord Off J Mov Disord Soc. 2013;28(13):1823–31.

    Article  CAS  Google Scholar 

  44. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53 Suppl 3:S26–36 (discussion S-8).

  45. Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A. Plasma urate and risk of Parkinson’s disease. Am J Epidemiol. 2007;166(5):561–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Schwarzschild MA, Schwid SR, Marek K, Watts A, Lang AE, Oakes D, et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol. 2008;65(6):716–23.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ascherio A, LeWitt PA, Xu K, Eberly S, Watts A, Matson WR, et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol. 2009;66(12):1460–8.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, Hare JM, et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 2014;71(2):141–50.

    Article  PubMed  Google Scholar 

  49. Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB. Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem. 2004;88(2):494–501.

    Article  CAS  PubMed  Google Scholar 

  50. Swanson CR, Joers V, Bondarenko V, Brunner K, Simmons HA, Ziegler TE, et al. The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflamm. 2011;8:91.

    Article  CAS  Google Scholar 

  51. Simuni T, Kieburtz K, Tilley B, et al. Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 2015 (Epub 2015/06/28).

  52. Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci USA. 2009;106(4):1285–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflamm. 2008;5:19.

    Article  Google Scholar 

  54. Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, Ell P, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinson’s Dis. 2014;4(3):337–44.

    Article  CAS  Google Scholar 

  55. Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, et al. Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol. 2007;64(7):990–7.

    Article  PubMed  Google Scholar 

  56. Allam MF, Campbell MJ, Hofman A, Del Castillo AS. Fernandez-Crehuet Navajas R. Smoking and Parkinson’s disease: systematic review of prospective studies. Mov Disord Off J Mov Disord Soc. 2004;19(6):614–21.

    Article  Google Scholar 

  57. Thacker EL, O’Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA, McCullough ML, et al. Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology. 2007;68(10):764–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Janson AM, Meana JJ, Goiny M, Herrera-Marschitz M. Chronic nicotine treatment counteracts the decrease in extracellular neostriatal dopamine induced by a unilateral transection at the mesodiencephalic junction in rats: a microdialysis study. Neurosci Lett. 1991;134(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  59. Quik M, Parameswaran N, McCallum SE, Bordia T, Bao S, McCormack A, et al. Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. J Neurochem. 2006;98(6):1866–75.

    Article  CAS  PubMed  Google Scholar 

  60. Jeyarasasingam G, Tompkins L, Quik M. Stimulation of non-alpha7 nicotinic receptors partially protects dopaminergic neurons from 1-methyl-4-phenylpyridinium-induced toxicity in culture. Neuroscience. 2002;109(2):275–85.

    Article  CAS  PubMed  Google Scholar 

  61. Cormier A, Morin C, Zini R, Tillement JP, Lagrue G. Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology. 2003;44(5):642–52.

    Article  CAS  PubMed  Google Scholar 

  62. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA. 2009;106(31):13010–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338(6109):949–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14(5):504–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Park.

Ethics declarations

Funding

No funding was received for the publication of this article.

Conflict of interest

Ariane Park M.D., M.P.H. and Mark Stacy M.D. declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, A., Stacy, M. Disease-Modifying Drugs in Parkinson’s Disease. Drugs 75, 2065–2071 (2015). https://doi.org/10.1007/s40265-015-0497-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0497-4

Keywords

Navigation