Skip to main content
Log in

Leveraging Cancer Therapeutics for the HIV Cure Agenda: Current Status and Future Directions

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Despite effective antiretroviral therapy (ART) and undetectable HIV RNA in the plasma, latent replication-competent HIV persists indefinitely in long-lived cells. Cessation of ART results in rebound of HIV from these persistent reservoirs. While this was thought to be an insurmountable obstacle to viral eradication, recent cases suggest otherwise. To date one patient has been “cured” of HIV and several others have been able to interrupt ART without viral rebound for prolonged periods. These events have sparked renewed interest in developing strategies that will allow eradication of HIV in infected individuals. We review the current knowledge of HIV latency and the viral reservoir, describe the potential utility of emerging cancer therapeutics in HIV cure research with an emphasis on pathways implicated in reservoir persistence, and outline opportunities and challenges in the context of the current clinical trial and regulatory environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wong JK, Hezareh M, Gunthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278(5341):1291–5.

    Article  CAS  PubMed  Google Scholar 

  2. Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hermankova M, Siliciano JD, Zhou Y, et al. Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J Virol. 2003;77(13):7383–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Siliciano JD, Kajdas J, Finzi D, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9(6):727–8.

    Article  CAS  PubMed  Google Scholar 

  5. Swiggard WJ, Baytop C, Yu JJ, et al. Human immunodeficiency virus type 1 can establish latent infection in resting CD4(+) T cells in the absence of activating stimuli. J Virol. 2005;79(22):14179–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Buzon MJ, Sun H, Li C, et al. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med. 2014;20(2):139–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dahabieh MS, Battivelli E, Verdin E. Understanding HIV latency: the road to an HIV cure. Annu Rev Med. 2015;66:407–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kumar A, Abbas W, Herbein G. HIV-1 latency in monocytes/macrophages. Viruses. 2014;6(4):1837–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Campbell JH, Hearps AC, Martin GE, Williams KC, Crowe SM. The importance of monocytes and macrophages in HIV pathogenesis, treatment, and cure. Aids. 2014;28(15):2175–87.

    Article  CAS  PubMed  Google Scholar 

  10. Ho YC, Shan L, Hosmane NN, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science. 2009;323(5919):1304–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hatano H, Jain V, Hunt PW, et al. Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J Infect Dis. 2013;208(1):50–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wagner TA, McLaughlin S, Garg K, et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 2014;345(6196):570–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Maldarelli F, Wu X, Su L, et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 2014;345(6193):179–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fukazawa Y, Lum R, Okoye AA, et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med. 2015;21(2):132–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci. 2014;111(6):2307–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ruelas DS, Greene WC. An integrated overview of HIV-1 latency. Cell. 2013;155(3):519–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Canestri A, Lescure FX, Jaureguiberry S, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50(5):773–8.

    Article  PubMed  Google Scholar 

  19. Archin NM, Vaidya NK, Kuruc JD, et al. Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection. Proc Natl Acad Sci. 2012;109(24):9523–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Persaud D, Gay H, Ziemniak C, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med. 2013;369(19):1828–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Saez-Cirion A, Bacchus C, Hocqueloux L, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013;9(3):e1003211.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.

    Article  PubMed  Google Scholar 

  23. Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Henrich TJ, Hu Z, Li JZ, et al. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis. 2013;207(11):1694–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Henrich TJ, Hanhauser E, Marty FM, et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med. 2014;161(5):319–27.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Shan L, Deng K, Shroff NS, et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity. 2012;36(3):491–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Badley AD, Sainski A, Wightman F, Lewin SR. Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis. 2013;4(7):e718.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Boesch AW, Alter G, Ackerman ME. Prospects for engineering HIV-specific antibodies for enhanced effector function and half-life. Curr Opin HIV AIDS. 2015;10(3):160–9.

    Article  CAS  PubMed  Google Scholar 

  29. Forthal D, Hope T, Alter G. New paradigms for functional HIV-specific non-neutralizing antibodies. Curr Opin HIV AIDS. 2013;8(5):393–401.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Siliciano JD, Siliciano RF. Recent developments in the search for a cure for HIV-1 infection: targeting the latent reservoir for HIV-1. J Allergy Clin Immunol. 2014;134(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  31. Verdin E. DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol. 1991;65(12):6790–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Manson McManamy ME, Hakre S, Verdin EM, Margolis DM. Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antiviral Chem Chemother. 2014;23(4):145–9.

    Article  Google Scholar 

  33. Shirakawa K, Chavez L, Hakre S, Calvanese V, Verdin E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol. 2013;21(6):277–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Campbell GR, Bruckman RS, Chu Y, Spector SA. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1. J Biol Chem. 2015;290(8):5028–40.

    Article  CAS  PubMed  Google Scholar 

  35. Van Lint C, Emiliani S, Ott M, Verdin E. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J. 1996;15(5):1112–20.

    PubMed Central  PubMed  Google Scholar 

  36. Lehrman G, Hogue IB, Palmer S, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet. 2005;366(9485):549–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Archin NM, Eron JJ, Palmer S, et al. Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS. 2008;22(10):1131–5.

    Article  CAS  PubMed  Google Scholar 

  38. Archin NM, Cheema M, Parker D, et al. Antiretroviral intensification and valproic acid lack sustained effect on residual HIV-1 viremia or resting CD4+ cell infection. PLoS One. 2010;5(2):e9390.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Routy JP, Tremblay CL, Angel JB, et al. Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: results from a multicentre randomized clinical study. HIV Med. 2012;13(5):291–6.

    Article  CAS  PubMed  Google Scholar 

  40. Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Elliott JH, Wightman F, Solomon A, et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 2014;10(10):e1004473.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Glaser KB. HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol. 2007;74(5):659–71.

    Article  CAS  PubMed  Google Scholar 

  43. Archin NM, Bateson R, Tripathy MK, et al. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis. 2014;210(5):728–35.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Dolgin E. Underestimate of HIV reservoirs threatens purging approach. Nat Med. 2013;19(4):384–5.

    Article  PubMed  Google Scholar 

  45. Rasmussen TATM, Brinkmann CR, Olesen R, Erikstrup C, Solomon A, Winckelmann A, Palmer S, Dinarello C, Buzon M, Lichterfeld M, Lewin SR, Ostergaard L, Sagaard O. Panobinostat, a histone deacetylase inhibitor, for latent virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV. 2014;1(1):e13–21.

    Article  Google Scholar 

  46. Wei DG, Chiang V, Fyne E, et al. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog. 2014;10(4):e1004071.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sogaard OS, Graverson ME, Leth S, Brinkmann CR, Kjaer AS, Olesen R, Denton PW, Nissen S, Sommerfelt M, Rasmussen TA, Ostergaard L, Tolstrup M. The HDAC inhibitor romidepsin is safe and effectively reverses HIV-1 latency in vivo as measured by standard clinical assays. In: 20th International AIDS conference, AIDS 2014: Melbourne, Australia; 2014.

  48. Papavassiliou KA, Papavassiliou AG. Bromodomains: pockets with therapeutic potential. Trends Mol Med. 2014;20(9):477–8.

    Article  CAS  PubMed  Google Scholar 

  49. Budhiraja S, Rice AP. Reactivation of latent HIV: do all roads go through P-TEFb? Fut virol. 2013. doi:10.2217/fvl.2213.2252.

  50. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer. 2012;12(7):465–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert Rev Mol Med. 2011;13:e29.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Wightman F, Solomon A, Kumar S, et al. Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS. 2015;29(4):504–6.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Beck KE, Blansfield JA, Tran KQ, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol. 2006;24(15):2283–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.

    Article  CAS  PubMed  Google Scholar 

  55. Ferris RL, Lu B, Kane LP. Too much of a good thing? Tim-3 and TCR signaling in T cell exhaustion. J Immunol. 2014;193(4):1525–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443(7109):350–4.

    Article  CAS  PubMed  Google Scholar 

  57. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Favre D, Mold J, Hunt PW, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of T(H)17 to regulatory T cells in HIV disease. Sci Transl Med. 2010;2(32):32ra36.

  59. De Lantigue J. Another immune checkpoint emerges as anticancer target 2013. 2015. Accessed 30 Apr 2015.

  60. Walker BD, Chakrabarti S, Moss B, et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature. 1987;328(6128):345–8.

    Article  CAS  PubMed  Google Scholar 

  61. Saez-Cirion A, Lacabaratz C, Lambotte O, et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci. 2007;104(16):6776–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68(7):4650–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Koenig S, Conley AJ, Brewah YA, et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat Med. 1995;1(4):330–6.

    Article  CAS  PubMed  Google Scholar 

  64. Riddell SR, Elliott M, Lewinsohn DA, et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med. 1996;2(2):216–23.

    Article  CAS  PubMed  Google Scholar 

  65. Lieberman J, Skolnik PR, Parkerson GR 3rd, et al. Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood. 1997;90(6):2196–206.

    CAS  PubMed  Google Scholar 

  66. Lam S, Bollard C. T-cell therapies for HIV. Immunotherapy. 2013;5(4):407–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Scholler J, Brady TL, Binder-Scholl G, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Science Transl Med. 2012;4(132):132ra153.

  68. Mitsuyasu RT, Anton PA, Deeks SG, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood. 2000;96(3):785–93.

    CAS  PubMed  Google Scholar 

  69. Deeks SG, Wagner B, Anton PA, et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther. 2002;5(6):788–97.

    Article  CAS  PubMed  Google Scholar 

  70. Mitsuyasu R. Curing HIV: lessons from cancer therapy. Curr Opin HIV AIDS. 2013;8(3):224–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Drake MJ, Bates P. Application of gene-editing technologies to HIV-1. Curr Opin HIV AIDS. 2015;10(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  72. Husseinzadeh N, Husseinzadeh H. mTOR inhibitors and their clinical application in cervical, endometrial and ovarian cancers: a critical review. Gynecol Oncol. 2014;133(2):375–81.

    Article  CAS  PubMed  Google Scholar 

  73. Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32(1):67–78.

    Article  PubMed  Google Scholar 

  74. Jakubowiak AJ, Dytfeld D, Griffith KA, et al. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood. 2012;120(9):1801–9.

    Article  CAS  PubMed  Google Scholar 

  75. Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Richardson PG, Siegel D, Baz R, et al. Phase I study of pomalidomide MTD, safety and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood. 2013;121(11):1961–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Lacy MQ, Allred JB, Gertz MA, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of two dosing strategies in dual-refractory disease. Blood. 2011;118(11):2970–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26(11):2326–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Escoubet-Lozach L, Lin I-L, Jensen-Pergakes K, et al. Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res. 2009;69(18):7347–56.

    Article  CAS  PubMed  Google Scholar 

  80. Görgün G, Calabrese E, Soydan E, et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood. 2010;116(17):3227–37.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Kotla V, Goel S, Nischal S, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. 2009;2:36.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Kuwabara S, Misawa S, Kanai K, et al. Thalidomide reduces serum VEGF levels and improves peripheral neuropathy in POEMS syndrome. J Neurol Neurosurg Psychiatry. 2008;79(11):1255–7.

    Article  CAS  PubMed  Google Scholar 

  83. Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327(5971):1345–50.

    Article  CAS  PubMed  Google Scholar 

  84. Xu W, Celeridad M, Sankar S, Webb DR, Bennett BL. CC-4047 promotes Th1 cell differentiation and reprograms polarized human Th2 cells by enhancing transcription factor T-bet. Clin Immunol. 2008;128(3):392–9.

    Article  CAS  PubMed  Google Scholar 

  85. Bren GD, Whitman J, Cummins N, et al. Infected cell killing by HIV-1 protease promotes NF-kappaB dependent HIV-1 replication. PLoS One. 2008;3(5):e2112.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Horna P, Sotomayor EM. Cellular and molecular mechanisms of tumor-induced T-cell tolerance. Curr Cancer Drug Targets. 2007;7(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  88. Ertmer A, Huber V, Gilch S, et al. The anticancer drug imatinib induces cellular autophagy. Leukemia. 2007;21(5):936–42.

    CAS  PubMed  Google Scholar 

  89. Schuster IS, Wikstrom ME, Brizard G, et al. TRAIL+ NK cells control CD4+ T cell responses during chronic viral infection to limit autoimmunity. Immunity. 2014;41(4):646–56.

    Article  CAS  PubMed  Google Scholar 

  90. Barblu L, Smith N, Durand S, et al. Reduction of death receptor 5 expression and apoptosis of CD4+ T cells from HIV controllers. Clin Immunol. 2014;155(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  91. Trivedi R, Mishra DP. Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells. Front Oncol. 2015;5:69.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Haselmann V, Kurz A, Bertsch U, et al. Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology. 2014;146(1):278–90.

    Article  CAS  PubMed  Google Scholar 

  93. Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G. Cancers take their Toll: the function and regulation of Toll-like receptors in cancer cells. Oncogene. 2008;27(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  94. Sloan D IA, Tsai A, Kaur J, Murry J, Cihlar T, Lalezari J. T. TLR7 agonist GS-9620 activates HIV-1 in PBMCs from HIV-infected patients on cART. In: Conference on retroviruses and opportunistic infections, February 23–26, 2015, Seattle, Washington, Abstract 417; 2015.

  95. Whitney J, et al. Treatment with a TLR7 agonist induced transient viremia in SIV-infected ART-suppressed monkeys. In: Conference on retroviruses and opportunistic infections, February 23–26, 2015, Seattle, Washington, Abstract 417; 2015.

  96. Zent CS, Smith BJ, Ballas ZK, et al. Phase I clinical trial of CpG oligonucleotide 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia. Leukemia Lymphoma. 2012;53(2):211–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Lahoud MH, Ahmet F, Zhang JG, et al. DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc Natl Acad Sci. 2012;109(40):16270–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Offersen R, Melchjorsen J, Paludan SR, Ostergaard L, Tolstrup M, Sogaard OS. TLR9-adjuvanted pneumococcal conjugate vaccine induces antibody-independent memory responses in HIV-infected adults. Hum Vaccines Immunother. 2012;8(8):1042–7.

    Article  CAS  Google Scholar 

  99. Winckelmann AA, Munk-Petersen LV, Rasmussen TA, et al. Administration of a Toll-like receptor 9 agonist decreases the proviral reservoir in virologically suppressed HIV-infected patients. PLoS One. 2013;8(4):e62074.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.

    Article  CAS  PubMed  Google Scholar 

  101. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  102. Administration FaD. Guidance for Industry Codevelopment of Two or More New Investigational Drugs for Use in Combination. In: Research CfDEa, ed2013.

  103. Park LS, Tate JP, Rodriguez-Barradas MC, et al. Cancer incidence in HIV-infected versus uninfected veterans: comparison of cancer registry and ICD-9 Code diagnoses. J AIDS Clin Res. 2014;5(7):1000318.

    PubMed Central  PubMed  Google Scholar 

  104. Shiels MS, Pfeiffer RM, Gail MH, et al. Cancer burden in the HIV-infected population in the United States. J Natl Cancer Inst. 2011;103(9):753–62.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA. Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst. 2015;107(4). doi:10.1093/jnci/dju503.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark N. Polizzotto or Catherine Godfrey.

Ethics declarations

Funding

This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272200800014C and by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, Department of Human Services.

Conflicts of Interest

M. N. Polizzotto, C. Godfrey, G. Chen and R. L. Tressler declare that they have no conflicts of interest.

Additional information

This paper was written by the authors in their capacity as NIH employees, but the views expressed in this paper do not necessarily represent those of the NIH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polizzotto, M.N., Chen, G., Tressler, R.L. et al. Leveraging Cancer Therapeutics for the HIV Cure Agenda: Current Status and Future Directions. Drugs 75, 1447–1459 (2015). https://doi.org/10.1007/s40265-015-0426-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0426-6

Keywords

Navigation